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Conic TO USERS

In the upper right-hand corner of each Mastery Test you will find the "pass"
and "recycle" terms and a row of numbers "1 2 3 ..." to facilitate the
grading of the tests. We intend that you indicate the weakness of a student
who is asked to recycle on the test by putting a circle around the number of
the learning objective that the student did not satisfy. This procedure will
enable you easily to identify the learning objectives that are causing your
students difficulty.

COMMIT TO USERS

It is conventional practice to provide several review modules per semester or
quarter, as confidence builders, learning opportunities, and to consolidate what
has been learned. You the instructor should write these modules yourself, in terns
of the particular weaknesses and needs of your students. Thus, we have not supplied

review modules as such with the CBP Modules. However, fifteen sample review tests
were written during the Workshop and are available for your use as guides. Please
send $1.00 to CBP Modules, Behlen Lab of Physics, University of Nebraska - Lincoln,
Nebraska 68588.

FINIS-
This printing has completed the initial CBP project. We hope that you are finding
the materials helpful in your teaching. Revision of the modules is being planned
for the Summer of 1976. We therefore solicit your comments, suggestions, and/or
corrections for the revised edition. Please write or call

Phone (402) 472-2790
(402) 472-2742

CBP WORKSHOP
Behlen Laboratory of Physics
University of Nebraska
Lincoln, HE 68588
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nodule

STUDY GUIDE

REFLECTION AND REFRACTION

1

INTRODUCTION

Sight is certainly one of our most important senses and depends on the interaction
of electromagnetic waves in the visible portion of the spectrum with the eye.
The use of materials that reflect light and that refract or "bend" light extends
throughout our industrialized society.

In this module we deal with light traveling in two dimensions and encountering
the boundaries between media under those conditions in which the wavelength is
small compared with the size of the obstacles or apertures. Under such conditions,
since diffraction and interference effects are negligible, the principal phenomena
occurring at the interfaces, reflection and refraction, can be understood and
the progress of a wave charted by a simple geometrical procedure: ray tracing.

PREREQUISITES

Before you begin this module,
you should be able to:

Location of
Prerequisite Content

*Write the relations among wavelength,
frequency, and velocity for a wave (needed
for Objectives 1 and 3 of this module)

Traveling Waves
Module

LEARNING OBJECTIVES

After you have mastered the content of this module, you will-be able to:

1. Definitions - Define light ray, angle of incidence, refraction, angle of
refraction, index of refraction, angle of reflection, total internal reflection,
critical angle, reciprocity, and Huygens' principle.

2. Law of reflection - Use the law of reflection to solve problems involving
the angles of incidence and reflection, ray oaths, and/or the images formed
by plane mirrors.

3. Law of refraction - (a) Use the law of refraction (Snell's law) to solve
problems involving the relationships among index of refraction, wavelength,
velocity of light, angles of incidence and refraction, and ray path for planar
slabs of materials. (b) Use the law of refraction to find the location of
the image of an illuminated object embedded in a slab of transparent material.

4. Total internal reflection - Use the concept of total internal reflection in
conjunction with the laws of reflection and refraction to find the nath of a
ray that fs internally reflected, or find the index of refraction if the rav

path is given.
5



STUDY GUIDE: Reflection and Refraction 2

GENERAL COMMENTS

1. Definitions

Since the definitions of terms that you must know to master Objective I are
scattered throughout the readings, ve have collected brief definitions here.
These are not meant to be necessarily complete definitions, but should serve to
remind you of the full meaning and special usage of each term as you read.

Refraction: the bending of a ray of light as it gasses through the boundary
between two media.

Angle of refraction: the angle between the refracted ray and the normal to the
boundary between two media.

Angle of incidence: the angle between the incident ray and the normal to the
boundary between two media.

Angle of reflection: the angle between the reflected ray and the normal to the
boundary between the two media.

Light ray: a line parallel to the direction of propagation of the liaht and
normal to the Plane wavefront. Although not entirely accurate, it is satisfactory
for most ray-tracing purposes to think of a very small beam of light as eauivalent
to a ray.

Reciprocity: also called "optical reversibility." reciprocity means that light
will follow the same ray path through a series of refractions and reflections in
going from point A to point B as it will in the reverse direction, B to AL .

Huygens' principle: All points on a wavefront can be considered as point sources
for the production of spherical secondary wavelets. After a time t the new position
of the wavefront will be the surface of tangency to these secondary wavelets.

Total internal reflection: When a ray in an optically dense medium falls on an
interface with a less optically dense medium at angles of incidence Greater than
some critical angle, for all practical purposes no light is transmitted; it is
all reflected.

Critical angle: the minimum angle of incidence at which total internal reflection
appears. It corresponds to the angle of incidence for which the angle of refraction
equals 900.

Index of refraction: a property of the medium defined as the ratio of the velocity

of light in vacuum to that in the medium. A material with a large index of
refraction is called optically dense.

2. Dispersion

In general the texts and problems assume monochromatic light (single wavelenoth).
However, light beams are a mixture of waves whose wavelengths extend throuahout

6



STUDY GUIDE: Reflection and Refraction 3

the spectrum. Although the speed of light in vacuum is the same for all wave-
lengths, the speed in material substances may be different for different wave-
lengths. A substance in which the speed of a wave varies with wavelength is said
to exhibit dispersion. The index of refraction of a substance is a function of
wavelength. Problem E is an example of this effect. The dispersion effect is
important since it provides a means of separating (disnersino) light into its
various colors in a prism spectroqraoh, it explains rainbows, and it is the cause
of color fringing in low-quality binoculars.

3. Important Formulas

There are really only three formulas you need to memorize for this module:

Law of reflection: ei = 01 or ei = er.

Law of refraction: nl sin el = n2 sin 02.

Definition of index of refraction: n = c/v.

We strongly suggest that you do not memorize formulas for the apparent depth of
an object in a pond, or the critical angle for internal reflection, etc. They can
be very short derivations if you understand the principles, and we have found
from oast experience that students who have memorized the formulas freouently
make mistakes in identification of symbols and are less able to deal with new
situations.

7



STIOY GUIDE: Reflection and Refraction 4(R1)

TEXT: Frederick J. Bueche, Introduction to Physics for Scientist and Engineers
(cGraw -Hill, New York, 1975), second edition

SUGGESTED STUDY PROCEDURE

Your text uses a different order from most texts in the presentation Of the coterie]
in this nodule. We suggest that you read Chapter 30, Sections 30.1 through 30.8
for continuity and definitions of terms, then reread Sections 30.1 to 30.3, 307
and 30.8 for detailed help in mastering the objectives. Bueche does not explicitly
use Huygens' principle to derive the laws of reflection and refraction, as is custo-
mary, although the discussion in Section 30.7 is based on this principle. Re
does give a statement of the princiole in Section 32.1 on p. 632; however, the
application is not particularly relevant to the present module. The princiole is
stated in the General Comments of this study guide. The derivations are not
necessary for the applications of the laws of reflection and refraction required
for mastery of this module; however, they will helo your understanding. A more
complete treatment can be found in Fundamentals of Physics.*

Read General Comments 1 through 3 in this study guide. Then study Problems A
through G and Illustrations 30.1 and 30.5. Then solve Problems H through m.
If you need more practice, you may wish to work some of the Additional Problems
listed below before taking the Practice Test.

BUECHE

Objective Problems with Solutions Assigned Additional
number Readings Problems Problems

Stiviv Text Study (Chan. 30
Guide Guide

1 Secs. 30-1,
30-2, 30-3,
30-7, 30-8,

General
Comment 1

2 Secs. 30-2, A, 8 Illus.a 30.1 H, I 1

30-3, General
Comment 3

3

4

Sec. 30-7, C, 0, Illus. 30.5 J, K 14, 15, 16

General
Comments 2, 3

Sec. 30-8 F, G L, M

aIllus. = Illustration(s).

*David Halliday and Robert Resnick, Fundamentals of Physics (Wiley, New York,

1970; revised printing, 1974), p. 673.



STUDY GUIDE: Reflection and Refraction 4(HR 1)

TEXT: David Halliday and Robert Resnick, Fundamentals of Physics (Wiley, New
York, 1970; revised printing, 1974)

SUGGESTED STUDY PROCEDURE

Read Chapter 36, Sections 36-1 through 36-5 and 36-7. The text does not give
midi detail on the variation of n with wavelength. University Physics* has a
more complete discussion that you should read if this text is available to you.
However, for purposes of mastering this module you may find that the discussion
in General Comment 2 and the solution to Problem E will suffice.

Read General Comments 1 through 3 in the study guide. Then study Problems A
through G and Examples 1, 2, and 5 in your text. Solve Problems H through M.
If you need more practice, you may work some of the Additional Problems listed
below before taking the Practice Test.

HALLIDAY AND RESNICK

Objective Problems with Solutions Assigned Additional
Number Readings Problems Problems

Study Text Study (Chap. 36)

Guide Guide

1 Secs. 36-1

to 36-5,
General
Comment 1

2 Secs. 36-2, A, B
36-7,

General
Comment 3

Ex.a 5 H, I 1, 24 to-

30, 32

3 Secs. 36-2, C, D, Ex. 1, 2 J, K 3, 4, 6,
36-3, 36-4, E 8, 9, 10
General
Comments 2, 3

4 Sec. 36-5 F, G 1,14 14 to 19,
21

a
Ex. = Example(s).

*Francis Weston Sears and Mark W. Zemansky, University Physics (Addison-Wesley,
Reading, Mass., 1970), fourth edition, Chapter 38, Sections 38-5 through 38-7.



STUDY GUIDE: Reflection and Refraction 4(SZ 1)

TEXT: Francis Weston Sears and Mark W. Zemansky, University Physics (Addison-
Wesley, Reading, Mass., 1970), fourth edition

SUGGESTED STUDY PROCEDURE

Read Chapter 37, Sections 37-1 and 37-3 through 37-6. These sections nive some
detail on the nature of light and introduce to you the laws of reflection and
refraction. Next read Chapter 38, Sections 38-1 throuah 38-4, 38-6, and 38-7.
These sections derive the laws of reflection and refraction from Huygens' principle
and define index of refraction, total internal reflection, and dispersion. Finally,
read Chapter 39, Sections 39-1, 39-2, and 39-6, which discuss imaae formation for
plane mirrors and plane refracting surfaces. Althouah the readings are not in
the same order as the objectives, you will find the order of the text better for
the first reading.

Read General Comments 1 through 3 in the study guide, and study Problems A through
G. Then solve Problems H through M. If you need more practice you may work some
of the Additional Problems listed in the Table below, before taking the Practice
Test.

SEARS AND ZEMANSKY

Objective
Number Readings

Problems with
Solutions

Assigned Problems Additional
Problems

Study Guide Study Guide

1 Secs. 37-1,
37-3 to 37-6,
38-1 to 38-4,
General
Comment 1

2 Secs. 37-5, A, B H, I 37-6, 37-7,
38-1, 38-2,
39-1, 39-2,
General

39-2, 39-3

Comment 3

3 Sec. 37-5, C, D, E J, K 37-8, 37-10
38-3, 38-6, to 37-13, 38-1,
38-7, 39-6, 38-3, 38-4,
General 38-13, 38-15,
Comments 2, 3 39-11 to 39-13

4 Sec. 38-4 F, 6 L, M 38-6 to 38-12

1:0



STUDY GUIDE: Reflection and Refraction 4(WS 1)

TEXT: Richard T. Weidner and Robert L. Sells, Elementary Classical Physics
(Allyn and Bacon, Boston, 1973), second edition, Vol. 2

SUGGESTED STUDY PROCEDURE

Read Chapter 36, Sections 36-1 through 36-8. You will not be responsible for the
contents of Section 36-7; however, this discussion of refraction of light from
an atomic point of view should broaden your general understanding of reflection
and refraction.

Read General Comments 1 through 3 in the study guide. Then study Problems A
through G and Example 36-1. Solve Problems H through M in your study guide. If

you need more practice, you may work some of the Additional Problems listed below,
before taking the Practice Test.

WEIDNER AND SELLS

Objective Problems with Solutions Assigned Additional
Number Readings Problems, Probleffis

Study Text Study

Guide Guide

1 Secs. 36-1
to 36-8,

General
Comment 1

2 Secs. 36-3, A, B
36-4,
General
Comment 2

3 Secs. 36-3, C, D,

36-5, 36-6, E

General
Comments 2, 3

Ex.a 36-1 H, I

J, K

36-1, 36-3,
36-4

36-5 to 36-8,
36-11 to
36-13, 36-16,
36-19, 3640

4 Sec. 36-8 F, G L, M 36-17, 36-21

a
Ex. = Example(s).

11



STUDY GUIDE: Reflection and Refraction

PROBLEM SET WITH SOLUTIONS

5

A(2). Two plane mirrors stand on a table adjacent to each other at an angle
of 60°. See Figure 1.

(a) Trace a horizontal light ray that is reflected twice in this system.
(b) Compute the angle between incident ray and second reflected ray.
Define clearly all quantities used.

Figure 1

Figure 3

/
\

I
/

\\
1

\ I /
\ \l//

45- -B-

ilkk.

object

Mirror Surfaces

Solution

(a) See Figure 2.
(b) X is the quantity sought. By the law of reflection, 0 = 0', 40 . .- (the

dashed lines are normals). Sum the angles in triangle POP':

60° + (90° - .) + (90° - 0 = 180° or 4) + 8 = 60°.

The exterior angle of triangle PP'Q = the sum of the opposite angles:

X a 20 + 2. = 120°.

B(2). The image formed by a plane mirror will act as an object for a second

mirror. Locate in Figure 3 the three distinct images that can be seen by
a suitably placed eye.



STUDY GUIDE: Reflection and Refraction 6

Solution

Take the right-hand mirror by itself as in Figure 4(a). Since Oi = Or, the

projection of any reflected ray behind the mirror intersects the normal to the

mirror at a point that is as far behind the mirror as the object is in front of

it: the object distance equals the image distance. We can now locate images A

and 13 on Figure 4(b). In Figure 4(b) a few light rays have been drawn that undergo

two reflections aqd appear to come from a point C, the third image. The image

at A (and 8) acts as an object for the image at C, and therefore the image lies

along the normal to the extension of the mirror: AP = PC.

Figure 4

P

Figure 5 13

(b)

C

/ \/IN/ i I \ 'N AD
Ili d'V/ \ / i

I I
/ 4 1 .

B -1 N / \
I I _.......p. A
i I - --

..-

.... ....

%4Veye

Figure 6

P



STUDY GUIDE: Reflection and Refraction 7

C(3). A glass of water in Figure 5 is partially immersed in a tank of carbon
disulfide (CS2). You are an observer 0 looking down through the water at
a particle P floating in the CS2. Some reflected light leaves the particle
at a small angle 0 with the vertical.
(a) At what angle 0 does that light emerge from the water? Express your
answer in terms of S. n

se-ter = 1.33; nglass = 1.50; and ncs2 = 1.53.

(b) If 0 = depth of water, does your answer to part (a) depend on 0?
Suppose 0-, O.

Solution

(a) See Figure 6. Use Snell's law at each interface:

(sin 0)/(sin 02) = n2/1111 (sin +2) /(sin 03) = n3021

Multiply these three equations

(sin 43)/(sin 0) = 114/n3.

sin 0
n n

- or 0 = arc sin( n1

4
sin 0) = arc sin (1.63 sin 0).

"1

(b) No, 0 is independent of 0, even if D + O. In fact, take away the glass of
water and 5 is still the same. It is only necessary to consider the index of
refraction of the initial and final materials in calculating the final angle of
refraction, and in all cases the final angle is independent of intermediate
materials. However, the apparent location of the object depends on these.

0(3). The "apparent depth" of an object immersed in an optically dense refracting
medium is less than the true depth when viewed from directly above. Show

that the apparent depth d' is related to the true depth d by d'
where n is the relative refractive index of the medium in which the object
is immersed. See Figure 7. Note: One may assume the angles to be so

small that the sine of an angle can be replaced by the angle itself.

Figure 7

Figure 8

370
and A.2

R = 1.0m

14 1

screen



STUDY GUIDE: Reflection and Refraction 8

Solution

The ray starts at depth d in the medium of index nl. By Snell's law:

n
1

sin 8
1
= n

2
sin 9

2'

and by the small-angle approximation, sin 8 = tan 8 = 8 (in radians):

n1$1 = n2$2.

From the geometry of Figure 7, tan 81 = x/d and tan 82 = x/d'. (Note that d' is

found by projecting the outgoing ray backward to the normal as the eye would do,

so that the light appears to come from depth d^.

tan 8 8
1 d' n2

nod

tan -r-=-=r. d =
2 2 1

n
1

E(3). Crown flint glass has an index of refraction that varies with the wavelength
of the light passed through it from 1.66 for a wavelength of 400 nm (violet)

to 1.60 for a wavelength of 700 nm (red). A narrow beam of light containing

the red and violet wavelengths above falls on the center of a semicircle
cut from this glass, as shown in Figure 8. Find the separation S of the

two rays on a circular screen with R = 1.00 m, centered at 0.

Solution

Apply Snell's law for each wavelength:

n
1
sin 8

1
= n

2
sin 8

2
and n

1
sin 0

1
= n

3
sin 9

3'

Rearranging, we find

82 = arc sinUn1 /n2) sin 00, 03 = arc sinUn1 /n3) sin 80.

Find

8
2

- 8
3

= arc sin(0.60/1.60) - arc sin(0.60/1.66) = arc sin(0.375) - arc sin(0.361),

= 22.0° - 21.2° = 0.8°,

s = R d8 = (1.00 m)(0.84
ra7dian

57'12) = 1.40 x 102 m.

F(4). The crooks in a typical TV drama are attempting to recover a fortune in
diamonds that they earlier sunk in a chest in 8.0 m of water. As a cover
for the operation they have moored a floating oil-drilling rig above the
position where they sank the chest. If the dimensions of the chest are small
in comparison with the rig, determine the size of rig required in order
that no sailor on a passing ship can see what is going on under the surface.
(Take n = 4/3 for water.)

15



STUDY GUIDE: Reflection and Refraction

Solution

We can consider the sunken chest as a point source of light. If the oil rig is
big enough for its purpose, then all rays of light from the chest that would he
refracted into the air at the surface must be blocked off by the base of the rig,
and all rays striking the surface of the water outside the rig must be totally
internally reflected. The rig obviously must be circular, and, if its center is
moored directly above the chest, a ray of light striking the edge of the rig
must do so at an angle equal to 0c, the critical angle. See Figure 9.

For the minimum radius r of the rig, n sin Oc = (l)sin 02 = sin(90°) = 1, therefore,

sin 0
c
= 1/n or r/(r2 + d

2
)
1/2

= 1 /n,

2 2 2
r -nr2 , or r

2
= d

2
/(n

2
- l).

This gives us

8.0 m
m.

(16/9 - 1)I/2 9.1

Alternate solution: Use Snell's law: n sin 'c = 1; therefore, sin 'c = 1/n = 3/4;

and Oc = 48.6°. We can find r from r = d tan Oc = m)(1.13) =' 9.1 m.

11-- r

G(4). In Figure 10 is shown a light ray passing through one side of a pair of
binoculars. L's represent lenses; ignore their function in this question.
(a) Given that the two 90°-45°-45° prisms are included chiefly for the
purpose of shortening the instrument without decreasing the optical path
length between the lenses, tell whether or not prisms made of clear Plastic
of index n = 1.47 would be suitable. Explain, giving a quantitative argument.
(b) Would the above prism in part (a) be suitable if the entire system
(prisms and lenses) were immersed in water? Indicate reasoning for vour
answer.

16



STUDY GUIDE: Reflection and Refraction 10

Solution

(a) The prisms must allow total internal reflection at 45° incidence. Thus,

6. = 45°, and 6. >
c'

where sin 0
c

= 1 /n. Thus sin 6. > 1 /n, or n > 1/(sin 45°) =

1.414. This condition is satisfied by a plastic of n = 1.47 and the prisms will

work.

(b) In water the same condition becomes

sine, =

n
H20

or sin 6 1." - 0.905 or ec = 65°.

' "plastic "olastic '"'

Therefore 6. < 6c, and the binoculars are of little use to a scuba diver if water

leaks inside them.

Problems

H(2). (a) Using ray paths, prove that in a calm, unpolluted lake the reflected

image of a pine tree on the shore will appear upside-down to a fisherman

meditating in his boat.
(b) Will the image of a fish in the same lake surface appear inverted to

another fish? Explain.

I(2). Suppose that (for reasons best understood by you) you decide to photograph

a street scene by using the reflection in a store window. You wish to set

your camera so that point X will be in sharp focus; for what distance must

you set your camera lens? The dimensions are as in Figure 11.

J(3). Light strikes a glass plate at an angle of incidence of 60°, part of the

beam being reflected and part refracted. It is observed that the reflected

. and refracted portions make an angle of 90° with each other. What is the

index of refraction of the glass?

K(3). A' berm of light as in Figure 12 hits a parallel-sided plate of glass of

index of refraction n. The thickness of the glass is 6.0 mm and the light

beam is displaced a distance of 4.24 mm.

(a) What is the index of refraction of the glass?
(b) What is the angle of refraction?

Store window

Cameral 12.0 m

Object being photogr,nbed.N9(

Figure 11 17



STUDY GUIDE: Reflection and Refraction

1(4). A beam of light shines on a glass prism
as shown in Figure 13. The beam is
perpendicular to the first face. Trace
out the subsequent path(s) of the light
beam until it has left the prism, and
find the angle of refraction as it leaves
the prism. The index of refraction of
the glass is 1.50.

Ni(4). A point source of light is 1.60 m below the surface of a still pond of
water. It appears to an observer from above the water that the light
comes only from a well-defined circular area of the water surface. What
is the diameter of this circle?
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Figure 13

Solutions

H(2). Yes.

K(3). (a) 1.22. (b) 35 °.

I(2). 20.0 m.

1(4). 48.5°.

J(3). 1.73.

H(4). 3.4 m.

PRACTICE TEST

1. Define critical angle and reciprocity, and state Huygens' principle.

2. The image formed by a plane mirror will act as an object for a second mirror.
Find the first four images formed by the pair of plane mirrors shown in Figure
14 (i.e., find the four images closest to the object).

3. A microscope is focused on a scratch made on the upper surface at the bottom
of a small container. Water is added to the container to a depth of 3.00 mm.
Through what vertical displacement must the microscope lens be raised to bring
the scratch into focus again? Assume that the displacement of the lens is equal
to the displacement of the image.

4. A fish looking upward toward the water-air interface sees a circular transparent
hole surrounded by a mirror. What is the radius of this hole when the fish's
eye is a distance of 1.00 m from the water surface? (n for water is 1.33.)

.4 - - - - -,
Figure 14
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REFLECTION AND REFRACTION

Mastery Test Form A

Name

Date

pass recycle

1 2 3 4

Tutor

1. Define angle of reflection, total internal reflection, and index of refraction.

2. Harry Gluck is mounting a mirror on the wall. He wants to be able to see
himself from his feet to the top of his head. Harry's eyes are a = MOO m
from the top of his head and b = 1.70 m from his feet, as in Figure 1.
(a) Whet is the maximum height x that the bottom of the mirror can be above
the floor?
(b) What is the minimum height y for the top of the mirror?

3. A diamond cutter is given a very large rough diamond to cut. He polishes a

flat on one side and, while examining it under his microscope, discovers a
flaw at an apparent depth of 0.60 cm. The diamond cutter knows some physics,
and, using the index of refraction of diamond n = 2.42, he calculates a real
depth of 0.250 cm and cuts at this point. Does he cut through the flaw? (Be

prepared to justify your answer.)

4. It is.desired to deflect a light beam through 600 by using a prism as shown in
Figure 2. Whet is the minimum value of n for which total internal reflection
will occur at point A?

Figure 1
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REFLECTION AND REFRACTION

Mastery Test Form B

Name

Date

pass recycle

1 2 3 4

Tutor

1......Def4ne-refraction, angle of incidence, and light ray.

2. The image of a tree just covers the length of a 5.0-cm plane mirror when
the mirror is held vertically 30.0 cm from the eye. The tree is 100 m from
the mirror. What is its height?

3. A plate of glass 10.0 an thick lies at the bottom of a tank under 10.0 cm of

water. What is the apparent distance from the top of the water to the bottom

of the glass plate? n
glass

= 2.00, nwater 1.33"

4. A monochromatic ray, initially in air, strikes a glass cube as shown in
Figure 1. Find the index of refraction n such that the ray striking the glass
at point A is just internally reflected.

Figure 1

45°r n = 1
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REFLECTION AND REFRACTION

Plastery Test Form C

Name Tutor

Date

pass recycle

1 2 3 4

1. State Huygens' principle, and define angle of refraction and critical angle.

2. A light source is positioned so that the beam from the source strikes a
mirror normally, as shown in Figure 1. A screen is positioned on both sides
of the light source- Now as the mirror rotates, the reflected beam striking
the screen moves across the screen. If the mirror rotates through an angle
of 15° from the normal position, how far will the spot of light move across
the screen?

3. A man in a diving bell looks out through a window and sees a fish at an

apparent distance of 12.0 m from the window- How far is the fish from the

window? eater l.33. Neglect the effect of the window.)

4. Light is incident normally on the face of a 3-4-5 prism opposite the 37°
angle. A drop of liquid is placed on the prism as shown in Figure 2. What
is the index of refraction of the liquid if total internal reflection in the
prism is just possible? The index of refraction of the prism is 1.50.

Light
source

Figure 1

I Screen

2.00 m

Mirror
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Figure 2

Liquid
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REFLECTION AND REFRACTION

MASTERY TEST GRADING KEY - Form A

1. Solution: Angle of reflection: the angle between the reflected ray and the
normal to the boundary between the two media. Total internal reflection: When
a ray in an optically dense (large index of refraction) medium falls on an
interface with a less optically dense medium at angles of incidence greater
than some critical angle, for all practical purposes, no light is transmitted;
it is all reflected. Index of refraction: a property of the medium propa-
gating light defined as the ratio of the velocity of light in vacuum to that
in the medium.

2. Solution: See Figure 20. (a) The law of reflection is Oi = Or, therefore,

by congruent triangles, no matter what z is, x must be equal to 1/2 the distance

from Harry's feet to his eyes (x = b/2) as shown in Figure 20. x = 0.85 m.

(b) Similarly the mirror must extend a distance a/2 above eye level so that
Harry can see the top of his head. The minimum height of the top of the mirror
is eye level (4) plus a/2 or

y = 1.70 + 0.100/2 = 1.75 m.

Figure 20

I

1

z
a.

4P42

Figure 21

3. Solution: See Figure 21. The diamond cutter should have set up the equations:

By Snell's law: n1 sin 01 = n2 sin 02.

In the small-angle approximation:

sin 81 = thy sin 82 = x/d2.
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REFLECTION AND REFRACTION A-2

Therefore, combining equations, we find

n i(x/di) = n2(x/d2).

The real depth is

d1 = (nl/n2)d2 = C(2.42)/1E0.60 cm) = 1.45 cm / 0.250 cm.

The diamond cutter goofed and cut it short. He now works for a butcher who
appreciates his short cuts.

4. Solution: At the interface of the prism and the air, point A, the light has
an angle of incidence of 600. We may use Snell's law to find the critical
angle in terms of the unknown index of refraction, n.

n sin 60° = (1) sin 90° = 1, / = 1 15
n sin 6n° 0.867

If n > 1.15, then n sin 60° > 1, and we shall still get total internal reflection.
However, if n < 1.15, we can find an angle of refraction 0 that will satisfy
n sin 60° = sin 8. Therefore n = 1.15 is the minimum index of refraction for
this situation.
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REFLECTION AND REFRACTION 13 -1

MASTERY TEST GRADING KEY - Form B

1. Solution: Refraction: the bending of a ray of light as it passes through
the boundary between two media. Angle of incidence: the angle between the
incident ray and the normal to the boundary between two media. Lioht ray:
a line parallel to thi-F1Fietion of propagation of light and normal to the
plane wavefront.

2. Solution: See Figure 22. A light ray proceeding toward A will be reflected
to B. By the law of reflection the angle of incidence equals the anole of
reflection at the mirror. Therefore, the angle between the ray and eye level
at 8 equals that at A. Triangle BMA (= AMO) is similar to ADC. Therefore, the
ratio of sides: OM/A0 = CD /AC. But OM = (1/2) height of mirror = 5/2 cm,
AO = BO = 30.0 cm, and AC = 100 m + 30.0 cm = 100.3 m. The height of the tree
is

2(0M)(AC) 2(5/2 cm)(100.3
2CD = 16.7 m.AO 30.0 cm

loo m

Figure 22

I

1 n3

10.0 cm
water

Figure 23

3. Solution: See Fioure 23. As derived from Snellts law in Problem 0,

d' = (n2/ni)d,

where d is the apparent depth and d is the actual depth. We apply this
relation for the thickness of the glass as if our eye were in the water:

, 1.33
(11 = lue10.0 cm) = 6.7 cm.

For the refraction at the air surface we calculate the depth of the object
as 10.0 cm 6.7 cm or 16.7 cm, and apply the formula again:

1
d2 = 17016.7) = 12.5 cm.
2 n32
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REFLECTION AND REFRACTION 8-2

4. What To Look For: Student should be able to figure out this identity. If
trig tables are not available, an answer in symbols should be acceptable, such
as

n = Ecos(art tan 4/2]-1.

Solution: Use Snell's law to find 0:

nair sin(451 =
n sin = 0.707.

The angle of incidence at the side of the cube where the refracted ray strikes
is 8 = 90° - 0. Therefore, using Snell's law for the critical angle:

n sin 8 = nair sin(90°) = 1

and substituting, we find

n sin(90° - 0) = 1 or n cos = 1.

From the first step:

n sin cl) 0.707
tan 0 or 0 = 35°.

n cos 0 1

Thus

n = 1/(cos ) = 1/0.82 = 1.22.
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REFLECTION AND REFRACTION C-1

MASTERY TEST GRADING KEY - Form C

1 Solution: Huygens' principle: All points on a wavefront can be considered
as point sources for the production of spherical secondary wavelets. After a
time t the new position of the wavefront will be the surface of tamencY to
these secondary wavelets. Angle of refraction: the angle between the refracted
ray and the normal to the boundary between the two media. Critical angle: the
minimum angle of incidence at which total internal reflection appears. It

corresponds to the angle of incidence for which the angle of refraction equals
90°.

2. Soltion: See Figure 24. Initially, O. = 0
r

= 0°. After the mirror rotates

15° (the normal to the mirror rotates 15 °), 0i = 0
r

15°. The included

angle is Oi Or = 30°. Therefore

x = 2 tan 30 = 1.20 m.

3. What To Look For: Look for misidentification of terms. Ask student to draw
a sketch and label quantities if in doubt.

Solution: The solution to Problem D derives a formula applicable to this
problem:

d° = (n2/ni)di

where d" is the apparent distance, n2 represents air, and n1 represents water
in this case. Therefore,

d = (n1 /n2)d° = (1.33/1)(12.0 m) = 16.0 m.

4. Sojutcon: Use Snell's law to find the critical angle:

ni sin 61 = n2 sin 02, (1.50)(sin 53°) = n2(sin 90°) = n,.

Therefore n2 = 1.5 sin 53* = 1.20.

Figure 24

x
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Module

STUDY GUIDE

ELECTRIC FIELDS AND POTENTIALS
FROM CONTINUOUS CHARGE DISTRIBUTIONS

'1

INTRODUCTION

Too bad! In case you have not realized it, not all charges come packaged as
points, spheres, infinite cylinders, or infinite planes. Ah, if only it were
so: Life would be much easier from a calculational viewpoint, although somewhat
limited in geometrical options. But then, mechanics would be simpler if only
constant accelerations were observed in nature...not to mention centers of mass;
moments of inertia, etc.; all would be considerably simpler to calculate in that
wonderful world of point masses, constant accelerations, massless strings, and
frictionless boards.

Once again calc.Ius is needed to assist us in analyzing and understanding natural
phenomena that are often manifested in hunks of mass, variable accelerations, and
globs of charge.

This module introduces no new fundamental physics. Instead, you will learn to
extend the concepts of electric field and potential to charge distributions that
defy solution by superposition of point-charge fields and Potentials or application
of Gauss' law.

PREREQUISITES

Before you begin this module,
you should be able to:

Location of
Prerequisite Content

*Integrate polynomial, sine, and cosine
functions (needed for Objectives 1 and 2 of
this module)

*Dqtermine the electric field of a point charge
(needed for Objectives 1 through 3 of this
module)

*Determine the electric potential of a point
charge (needed for Objectives 1 through 3
of this module)

Calculus Review

Coulomb's Law and
the Electric Field

Module

Electric Potential
Module

LEARNING OBJECTIVES

After you have mastered the content of this module, you will be able to:

1. Line char es - Given a rectilinear charge distribution, set up, and in some
cases eva uate, the definite integral for:
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STUDY GUIDE: Continuous Charge Distributions 2

(a) the total charge on a specified segment of the line;
(b) the electric potential at a specified point;
(c) the electric field at a specified point.

2. Ring and disk charges - Given a charge distribution on a circular arc, sector,
or disk, set up, and in some cases evaluate, the definite integral for:
(a) the total charge on a specified portion of the distribution;
(b) the electric potential and electric field at the center of the circular
arc, sector, or disk and on the axis of the disk.

3. Limiting cases - Demonstrate that the integrals of Objectives 1 and 2 reduce
in limiting cases to results expected for simpler charge distributions.

GENERAL COMMENTS

Determining the electric potential V or the electric field E from a continuously

distributed charge generally requires the use of integral calculus. Unless the

charge distribution has sufficient symmetry so as to permit the use of Gauss' law

to determiner, a calculation of either t or V requires that you: (a) use physics

to set up a definite integral; and (b) use calculus (or numerical techniques) to

evaluate this integral. Since this is a physics course, your attention will focus

on step a. Step b can range in difficulty from trivial to impossible depending

upon the complexity of the charge distribution and upon your facility at evaluating

integrals. Although we shall not emphasize the mathematical gymnastics of integral

evaluation, you should feel free to try your hand at any that you simply cannot

resist!

When calculating t or V from a distributed charge, the essential idea is reasonably

simple. It goes like this. Select a very small (some would say infinitesimal)

charge dq within the distribution. Treating it as a point charge, write the

expression for either the potential dV or the field dr at the specified field point.

Then superimpose the contributions from the total distribution by means of an

integral. p
""Let us look at this procedure in more detail. 0.

Consider Figure 1. There are three vectors
you must be sure you understand -

Position vector for the field point P:

R = xi zk;

Position vector for dq:

A A A

= xi + yj + zk;

28
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STUDY GUIDE: Continuous Charge Distributions

Displacement vector from dq to P:

r- R- R= (x- )i +(Y-Y)j'(z -)k.

3

As you know from your study of electric potential, the potential at P attributable

to the charge dq is

dV = (k dq)/r (k = 1/11sc0 = 9.0 x 109 DD 02,c2),

where r is the distance from dq to P, i.e.,

r= ftl = dlx ty - yy (z

Writing out the expression for dV more explicitly gives us

dY = (k d9) / /(x - 10' 4- (Y Y)4 f (z zi' .

This emphasizes the dependence of dY upon the coordinates of both the field point

P and the charge point. The potential at P from the' total charge distribution is

obtained by summing (integrating) over the charge.

v(A) =
k dg

all charges r

The dependence of the electric potential on the coordinates of the field point

is emphasized by the functional dependence of V on.

For a given charge distribution the limits on the integral will be determined by

the geometry of the charge distribution. This will be discussed in more detail in

the Problem Set.

The electric field at P attributable to dq is

dt = (kit dq)/r3

Using the integral to superpose the contributions from all the charge gives us

t() = dq) /r3,

where, again, the dependence of the field on the coordinates of the field point
is emphasized.

You should note that the essential difference between the expressions for V and

t is that V is a scalar sum, but t results from a vector sum. Details of setting

up these integrals and seeing how to check them are covered in the Problem Set.
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STUDY GUIDE: Continuous Charge Distributions 4 (B 1)

TEXT: Frederick J. Bueche, introduction to Physics for Scientists and Engineers
(McGrawHill, new York, 1975), second edition

slAGESTE0 STUDY PROCEDURE

Begin by studying the General Comments. Then read Sections 18.6 and 18.7 up to
Illustration 18.4 on p. 336 in Chapter 18 of your text, and Section 20.8 in Chap-
ter 20. next study Problems A through 0 and work Problems J, L, H, and 11. Study
Problems E and F and work Problem K. Problem S is challenging and optional. Next
study Illustration 18.4 and Problems G and H. Work Problem 0 - Problem T is
challenging, but optional_ Study Sections 20.12 and 20.13, Problem I, and work
Problems P, 0, and R.

Take the Practice Test, and work some Additional Problems if necessary, before
attempting a Mastery Test.

BUECHE

Objective Readings. Problems with Assigned Additional
Number Solutions Problems Problems

Study Study
Guide Guide

1 Secs. 18.6,
18.7, 20.8

A, B, C J, L, S; Chap. 18,
Probs. 13, 14

2 Secs. 18.7,
20.12, 20.13

G, H, I 0, Q T; Chap. 18,
Probs. 15, 16,
17; Chap. 20,
Probs. 18, 19

3 Sec. 20.8 0, E, F K, M, N,
P, R

30



STUDY GUIDE: Continuous Charge Distributions 4 (HR

TEXT: David Halliday and Robert Resnick, Fundamentals of Physics (Wiley, New
York, 1970; revised printing, 1974)

SUGGESTED STUDY PROCEDURE

Begin by studying the General Comments and Problems A through D. Then work Prob-
lem J. Next study Problem E and work Problems V. and L; study Problem F and work
Problems M and N. Problem S is a challenging example that you may work if you so
wish. Next study Problems G and H before working Problem 0 and, if you like, the
challenging Problem T. flow go to your text and read Example 5 in Chapter 23 (on
pp. 439, 440) and Example 6 in Chapter 25 (p. 473). Then study Problem 1 and
work Problems P. Q, R.

Take the Practice Test, and work some Additional Problems if necessary, before
attempting a Mastery Test.

HALLIDAY A40 RESNICK

Objective
lumber Readings

Problems
with Solutions

Assigned
Problems

Additional
Problems

Study Guide Study Ttaie

1 General Comments A, B,
C, F

J, L,
M, H

S; Chap. 23,
Probs. 28, 29

2 Chap. 23, Ex.a 5;
Chap. 25, Ex. 6

G, H,
I

0, Q T; Chap. 23,
Prob. 27

3 General Comments 0, E,
F

K, M, H,
P, R

aEx. = Example(s).



STUDY GUIDE: Continuous Charge Distributions 4 (SZ 1)

TEXT. Francis Weston Sears and Mark W. Zemansky, University Physics (Addison-
Wesley, Reading, Mass., 1970), fourth edition

SUGGESTED STUDY PROCEDURE

Begin by studying the General Comments. Then read Section 25-2 in Chapter 25,
and study Problems A through D before working Problem J. Next study Problem E
and work Problems K and L. Then study Problem F and work Problems M and N, and
Problem S if you like (challenging but optional). Study Problems G and H and
work Problem 0; Problem I is optional. Study Problem I and work Problems P, Q,
and R.

Take the Practice Test, and work some Additional Problems if necessary, before
attempting a Mastery Test.

SEARS AND ZEMANSKY

Objective Problems Assigned Additional
Number Readings with Solutions Problems Problems

Study Study
Guide Guide

1 General Comments, A, B, J, 1, S
Sec. 25-2 C, F M, N

2 G, H, I 0, Q T

3 D, E, F K, M, N, S
P, R
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STUDY GUIDE: Continuous Charge Distributions 4 (WS 1)

TEXT: Richard T. Weidner and Robert 1. Sells, Elementary Classical Physics
(Allyn and Bacon, Boston, 1973), second edition, Vol. 2

SUGGESTED STUDY PROCEDURE

Begin by studying the General Comments. Then study Problems A through D and work
Problem J. Read Section 23-3 in Chapter 23 up to and including Example 23-2. Then
study Problem E and work Problems K and L, study Problem F and work Problems M
and N. Next study Problems G and H and work Problem O. Problems S and T are
challenging optional problems. Study Problem I and work Problems P, Q, and R.

Take the Practice Test before attempting a Mastery Test.

WEIDNER AND SELLS

Objective Problems Additional
Number Readings with Solutions Assigned Problems Problems

Study Guide Study Guide

1

2

General A, B, J, L, S
Comments, C, F M, N

Sec. 23-3

G, 0, I 0, Q T, 23-9

3 0, E, F K, 14, N, P, R
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STUDY GUIDE: Continuous Charge Distributions 5 1

1

PROBLEM SET MTH SOLUTIONS

A(1). A charge Q is uniformly distributed over the interval 0 < x < L along the
x axis.

(a) Determine the linear charge density in 0 < x_< L.
(b) Determine the charge dq on a segment dx in zr< x < L.
(c) Set up and evaluate an integral for the electric potential at a point
(x, 0, 0) on the x axis to the right (x > L) of the charge.

Solution

(a) See Figure 2. Since Q is uniformly distributed the linear charge density A is
constant In 0 < x < L and given by

A = Q/L.

Figure 2

(b) The charge dq in a segment dx in the charge region is equal to the charge
density multiplied by the length of the interval,

dq = A dx = (Q dx)/L.

(c) The vector from dq to the field point is; = (x - x)i, and its magnitude is

r = 01 = x x for x > x.

Then-the potential dV at x attributable to dq is

dx
dV 14.= (ta)

and the potential at x is

141 L dx
11(x) = Au./

L 0 - x
.

The limits on the integral are determined by the charge boundaries. In a one-
dimensional distribution such as this, the smaller boundary coordinate (x = 0) is

the lower limit and the larger (x = L) is the upper limit. The integral for V(x) is
evaluated by the substitution u = x - x to get

3 4



STUDY GUIDE: Continuous Charge Distributions 6

kQ x du k0
V(x) f -= ln(

x L
x )

L L
x - L

0(1). Determine 1. at (x, 0, 0) (x > 1) for the charge distribution of Problem A.

Solution

The field drat (x, 0, 0) from dq is

dx
= ILO.= (t4 {x Z)i (k0I2=1

L
(x - x)

and

t(x) = (112) f
dx

0 (x joi

Using the substitution u = x x gives us

(x) = fx AL_ (L1142=( 1 1 kQ

x L u2 L 1 x L

1

x(x L)l

Comment: Recall from your study of potential that if the potential is a function
of one variable only (in this case, x), then

E(x) = - dY /dx.

Let us check this in this case.

-11= x - ln(x - = 710 = E(x),

as expected.

C(1). Charge is distributed along the x axis as given by the linear charge density

A(x) = ox2 for 0 < x < L.

(a) Determine the total charge Q in this distribution.
(b) Express the constant cc in terms of Q and L.

Solution

(a) X(x) is the linear density in coulombs per meter (C/m). The charge dq on

an infinitesimal segment dx at position x is dq = A(x) dx. Since the total charge

contained in a region a < x < b is given by faX(x) dx.. the charge Q is



STUDY GUIDE: Continuous Charge Distributions

1
Q = f ax2 dx =;11213.

0

(b) Solving for a gives us

a = 3Q/13.

Thus

x(x) = 3q3
2
/L3.

7

0(3). Show that t(x) from Problem B reduces as expected for x >> L.

Solution

First, how do we expect t to behave for x >> 1? In this case the field point is

so distant from the charge that t should be very close to that from a point charge

Q at the- origin, i.e.,

t(x >> 1) = (kQ/x2)i.

Now let us see if this is the case. The Problem B result can be written

kQ

x (1 - L/x)

For 1 « x, 1/x « 1, and 1 - L/x = 1. Therefore

t(x >> 1) = (kQ/x2)i.

E(3). Show that the integral for V(x) in Problem J reduces as expected for x >> L.

Solution

For x >> 1 > x, x x = x. Thus

1 x2 d
V(x >> i) 314 f 34 L

1 0 x 1 x 0

which is the potential for a point charge Q at the origin.

F(1, 3). For the charged rod of Problem A (charge Q uniformly distributed over
0 < x < 1): A
(a1-3g-up an integral for the electric field at = yj (a point in the
plane perpendicular to the x = 0 end of the rod).

38



STUDY GUIDE: Continuous Charge Distributions

(b) Show that this integral reduces as expected for y >>.L.

Figure 3

Solution

(a) See Figure 3. The electric field at yj resulting from the presence of

dq = (Q dx)/1. at xi is

dt = (1(Q/L)(r dx/r3),

where r = -xi + yj (Why the negative sign?), and

r = 1;1 = (x2 +-12)112.

Thus

dt = (M)/1.)[(-xi yj) dx] /(x2 y2)3/2.

Integrating to get at (y, 0, 0) gives us

GA L (-xi + yj) dx

tttaiI."

0

r

I-- y
2

)
3/2

which may be rewritten

L Adx L dx

(y) Pig' 1 2 2 A/2)i + (111f ),i
o + y-)-'- 0 (X2 y2)3/2

Thus the components of ' are

L x dx L dx

Ex(Y) f 2 2 3/2 ' Ey(Y)) 141 1 2 2 3/2
0 (x + y ) 0 (x +y)

37
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STUDY GUIDE: Continuous Charge Distributions 9

(b) Before seeing what happens to these results for y » L, what do we expect?
If the rod length L is small compared to the distance from the rod to the field
point, the field should be very nearly the same as that of a point charge Q at
the origin. That is,

t(y >> L) = (kQ/y2)j.

Let us see. Consider the y component first. Since y >> L and 0 < x < L,

2
y2

2
x + y = Y

so that

dxjL kQ
yy >> L) = I -"f0 y

Just what we expected! What about Ex?

L x dx
Ex(y >> L)1= -0-1 =;,=

0 y's 2y

Figure 4

What's this? We expected Ex to be zero, and it apparently isn't. But things are

not as bad as they might appear. Watch. Rewrite the result for Ex:

lExly » IA= = 1.7Ey(Y » L) « Ey(y » L).

Thus although E
x

is not identically zero, it is negligible compared to Ey. The

integrals for Ex and Ey can be evaluated by standard substitution techniques.

The appropriate substitutions and the results are given. Have a try at it if you

are so inclined.

0
E
x

: u = x
2
+ y

2
, Ex(y) = -(kiyiy)[1 - y/(y2 4 12)1/?],

."
I a.

x
, 2 2 1/2 dir

de I

Ey: : tan e u --, Ey(y) = k()/YtY + L)
Figure 5

6(2). A charge is uniformly distributed along the circular arc shown in Figure 4.
Determine the electric potential and field at the origin.

Solution

Let dq be the charge on a segment of arc as in Figure 5. Since each dq is the

same distance from 0, the electric potential is particularly easy to determine:

u r.1U:19
V0=

.

0 a Pum a
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STUDY GUIDE: Continuous Charge Distributions 10

The displacement vector from dq to the origin is

r = (a cos -0)1 + (a sin 8)j.

The electric field at 0 attributable to dq is then

d = (k; dq)/r3 = k[(cos 0)11 + (sin 0)h/a2 dq.

Since dq subtends an arc segment of length a de and since Q is uniformly distributed

along the length ira/2,

dg = Tr 7 a de =p.a.

Thus

tn-2"1-T /1/2 Ecos e)i + (sin Oillde = f1/2 (cos 0 d0)1 + f1/2(sin 0 dO)i]

a' 0 7ra
2

0 0

(2kQhfa2)(i + j).

Thus

E
x

E
y

= 2kQhra
2.

Since Ex = Ey' t0 makes an angle of with the positive x axis and has a magnitude

r 2ir r211/2 2vawira2.
l'x "yi

H(2). A charge Q is uniformly distributed over ene-quprter of the circle shown in
Figure 6 as a shaded region. Determine the electric potential at the
origin 0.

dr.

R

Figure 6

CZ
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STUDY GUIDE: Continuous Char0. Distributions 11

Solution

See Figure 7. The essential idea here is: (a) to determine the potential at 0
from the charge on the ring of radius r and width dr; and (b) to add these contribu-
tions to get V. In Problem G the contribution from the ring wi determined to be

dV = (k dq)/r,

where dq is the charge on the ring. To seC dq we use the fact that Q is uniformly
distributed over the area (1/43nR', and thus the density on this surface is uniform
and given by

40
" (1/40 irti)z TrI'

The area dA of the ring undcr consideration is

dA = (length) x {width) = (1/2)ur dr.

Therefore the charge on the ring is

dq = a dA = (2Qr dr)/R2.

The potential at 0 attributable to this ring is then

dV = 2k0/R
2

dr.

Summing over all rings, i.e., integrating over r from 0 to R, gives us

v = f
R

dr . 211.

° o R2 R

Comment: By rewriting this as

V =
0 R 2'

we see that the potential at 0 is the same as if all the charge were placed a
distance (1/2)R away.

I(2). A charge Q is uniformly distributed along a ring of radius a as in Figure 8.
Determine the electric potential and field at the point P on the axis of
the ring.
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STUDY GUIDE: Continuous Charge Distributions

Figure 8

te cos

Figure 9

12

Solution

See Figure 9. The distance from each elementary charge dq on the ring to the
field point is constant,

r = (z2 + a2)112

Hence, the potential at P is

% flA kQ
Vlz, = j

r (z4 & .
)

The components of E perpendicular to the axis sum to zero. This is ensured by
the fact that charges on opposite sides of the circle contribute fields with equal
components along the axis but oppositely directed perpendicular components. From
the figure the magnitude of the field at P by dq is

dE = (k dq)/r2,

and the axial component is

dE
z
= dE cos a = dE(z/r) = (kz dq)

/(z2
+

a2 }312.
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STUDY GUIDE: Continuous Charge Distributions

Therefore,

Ez(z) = fkz/(z2 + a2)3/2 dq,

but since a and z do not change for different dg's,

[kz/(z2 a2)3/2]fo
kzQ/(z2 + a2)3/2.

13

Problems

(1(1). Set up (but you need not evaluate) integrals for V and t at the point (x, 0, 0),
x > 1, for the linear charge distribution of Problem C, 1(x) = Ne/L.

K(3). Show that the integral for t(x) in Problem J reduces as expected for x >> L.

LW. For the charge distribution of Problem C,

i(x) = 3Qx2/I. for r 0 < x < Ls

determine the electric potential and field at the origin.

A

M(l, 3). (a) Set up the integral for the electric potential at the point yj as in
Problem F.
(b) Show that this integral reduces appropriately for y

N(1, 3). (a) For the uniformly charged rod in Figure 3, set up intesrals,for the
electric potential and field at an arbitrary field point xi + yj zk.

(b) Show that your integrals of part (a) are identical to earlier integrals
for the following cases:
(i) x > L, y = z = 0 from Problems A and B.
(ii) y > 0, X = z = 0 from Problems F and M.

0(2). A charge Q is uniformly distributed along the circular arc shown in Figure 10.

Determine the electric potential and field at the center.

P(3). Show that the results obtained in Problem I behave as expected for a = 0
and z >> a.

Q(2). A charge Q is uniformly distributed over a disk of radius R as in Figure 11.
Set up, but do not evaluate, integrals for the electric potential and field
at a point on the axis of the disk.

R(3). Show that the integrals of Problem I reduce appropriately for z >> R.

S(1, 3). (Optional - challenging). (a) Use the integrals of Problem H to evaluate

V and t at (1/2)li yj, a point in the midplane of the charged rod. Hint:

Use the substitution

x 1/2
tan 0=

y
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STUDY GUIDE: Continuous Charge Distributions 14

(b) Suppose y << L for part (a). In this case the fidid point is very close

to a long charged rod. Show that your result fart reduces to that obtained

for a long charged rod using Gauss' law, namely, (2W/Ly)j.

CIN
Figure 10

I

lz

Figure 11 Figure 12

T(2). (Optional - challenging). A charge Q is uniformly distributed over the
area shown in Figure 12. Determine the electric potential and field at
the center.

Solutions

1(1). V(x) = fIL 2? di

LJ 6 3777
tlx) . 211

L d

(x -
x)2 "

K(3). t(x » 1.) = (1(11/x2)I.

L(1). V(0) = 3k0/21., t(0) = -(30/1.2)I.

141 L dx

14(1, 3). V(y) = 7477,7 iml for y » L.
L 7

Comment: The substitution tan 0 = 3/y leads to

V(y) = (k0/1.) In
[(y2 12)1/2 Lyy

Remember, you are not required to do this integral.

dx

11(1, 3). lax, y, z) t(111-to
[(x

1)2 + y2 z2j1/2-

Elx
fix, y, z) =

zis0

0 [(x -
a)2 y2 + z2j3/2
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STUDY GUIDE: Continuous Charge Distributions 15

0(2). V0 = 4/a, 10 = (2W/ma2)1.

P(3). z = 0: Y(a) = We, Ez(0) = 0.

z >> a: V = kQ/z, Ez = kQ/z2.

RQ(2) i
911.

Y(z) W.
t41 (r2 z2)1/2

241,1 r d2r
k.42 0 (r2 z)312

R(3). V(z » R) m kQ/z2, E(z » R) = (4/z2)i.

S(1, 3). V(1/2, y, 0) = (2W/L) inf[(4y2 ÷ 12)1/2 + 0/20,

(L /2, y, 0) = (2kQ /y(4y2 T 0)1/2i.

T(2). Vo = 21(Q/3R, 10 = (4W/3nR2)(1n 2)1.

PRACTICE TEST

1. A linear charge is distributed along the x axis with the density

A(x) = ax
3

for 0 < x < L.

(a) Determine the total charge Q in terms of a and L.
(b) Determine the electric potential at the origin. Express your answer in
terms of Q, L, and other constants (not including a). -

2. A charge I) is uniformly distributed along the arc shown in Figure 13.
(a) Determine at the origin.
(b) Use

lim sin a
0 17.1

to show that your result reduces as expected as a 4' 0.

a
TWO ulsn(23 101)1 (P) .Z

Figure 13 1E/040 = A (q) -Mtn) = O (n)
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ELECTRIC FIELDS MD POTENTIALS
FROM CONTINUOUS CHARGE DISTRIBUTIONS Date

Mastery Test Form A

Name Tutor

pass recycle

1 2 3

1. Charge is distributed along the x axis according to the linear charge density

1(2!) = G sin(zx/L), 0 < x < L

(a) Determine the total charge O.

(b) Set up, but do not evaluate, an integral for the electric potential at the

field point xi + y3.

(c) Set up, but do not evaluate, an integral for the electric field at the

field point xi + y3.

2. Show that your integral for tlx, y) in Problem 1 reduces appropriately for

t(L/2, y » 1).

3. A charge 0 is uniformly distributed on the flat circular sector shown in

Figure 1. Determine the electric potential at the center (point 0) in terms

of Q, R, , and other constants as needed.

Figure 1
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ELECTRIC FIELDS MD POTENTIALS
FROM CONTINUOUS CHARGE DISTRIBUTIONS Date

Mastery Test Form B

Name Tutor

pass recycle

1 2 3

1. Charge is distributed along the x axis according to the linear charge density

2,Q) = Ox(1- A), 0 < x < L.

(a) Determine the total charge Q.

(b) Set up, but do not evaluate, an integral for the electric potential at the

field point xi + yj zk.

(c) Set up, but do not evaluate, an integral for the electric field at the

field point xi 4' A + zk.

2. Show that your integral for V(x, y, z) in Problem 1 reduces appropriately

for V(x » L, 0, 0).

3. A charge 0 is uniformly distributed on the flat circular section shown in

Figure 1. Determine the electric potential at point 0 in terms of Q, R, and

other constants as needed.

Figure 1



ELECTRIC FIELDS AND POTENTIALS
FROM CONTI1IUQUS cuARGE DISTRIBUTIONS

Mastery Test Form C

Name Tutor

Date

pass recycle

1 2 3

1. Charge is distributed along the x axis according to the linear charge density

A(x) = cos(sx/200 < x < 1.

(a) Determine the total charge O.

(b) Set up, but do not evaluate, an integral for the electric potential at

the field point x; + A A.

(c) Set up, but do not evaluate, an integral for the electric field at the

field point xi + yi + A.

2. Show that your integral for E(x, y, z) in Problem 1 reduces appropriately for

E(00 0, z » 1).

3. A charge Q is uniformly distributed on the annular ring shown in Figure 1.

Determine the electric potential at a point on the axis of the ring a dis-

tance h from the ring's plane.

Figure 1
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ELECTRIC FIELDS AND POTENTIALS FROM CONTINUOUS CHARGE DISTRIBUTIONS A-1

MASTERY TEST GRADING KEY - Form A

1. What To Look For: (a) Correct answer. (b) Be sure denominator of answer
is correct. (c) Check for unit vectors in numerator.

Solution: Q = fL A(x) dx = (L sin(vx/L) dx =
0 0mg ko sin(vx/L)

(b) V(x,y) = dx.
r 0 [(x L02 +y2 l&

(c) t(x,y) klisr(x - x)i

2

yil sin(lx/L)
dx.

r 0
[(x 1) + y2] 3/2

2. What To Look For: (a) No contribution to Ex. (b) Correct result.

Solution:

t(L/2, y » L)
ktg(1./2

2)1' ya1 sin(wx /L) dx

0 [(x - 1)2 + y23312

=
(14

sinerS1 (k- ILO sing) di0j.
Y 0 Yz 0

But
0
fret - )1) sin() dx = 0 (odd about x =

and

Of LB sin(0) It. Q.

So t(L/2, y » L) = (kO/L2).1.

3. What To Look For: (a) Correct dq. (b) Correct expression for dV. (c) Correct

answer.

Solution: See Figure 17. Area of sector = OR
2
/2. Charge density =

area
oR

dA = (rO) dr, dq = (density)dA = (211/012)ro dr = (2Qr dr)/R2.

dV = (k dq)/r = (2kQ dr)/R2,

v

0 e
214g.

Figure 17



ELECTRIC FIELDS AND POTENTIALS FROM CONTINUOUS CHARGE DISTRIBUTIONS 8-1

MASTERY TEST GRADING KEY - Form 8

1. What To Look For: (a) Correct answer. (b) Correct denominator. (c) Unit
vectors in numerator.

Solution: (a) Q =
ft_ dx fL x..

(L - 21) dx = 013/6.

0

(b) V(x, y, z) = fM-q-= 11- kOXIL x)

r 0 202 + y2 z2 /2

^ ^

(C) Y, 2) = kax - x).1 + yj + zicha - x)

) r 0)
yx D2 yg z233/2 u=:

2. What To Look For: See that integral for Q is correct. Correct answer.

Solution: V(x » L, 0, 0) =AIL ki3x(i 3) dx = x
f_ o xi 4,1 A IS.

rx x

3. What To Look For: Correct dq. Correct dV. Correct answer.

Solution: See Figure 18. Area of sector = (3r/2)(R2/2) = (3iR2/4).

Charge density 0 = Q/Area = 40/3a2. dA = (r4) dr = (3N/2)r dr.

dq = 0 dA = (3N/2)(4Q/342)r dr = (2Q/R2)r dr.

a ygL = 2 LOL dr; V = fdV = fRAQ -dr =
0 R

R

Figure 18
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ELECTRIC FIELDS AND POTENTIALS FROM CONTINUOUS CHARGE DISTRIBUTIONS C-1

MASTERY TEST GRADING KEY - Form C

I. What To Look For: Correct answer. Correct denominator and limits. Unit
vectors in numerator. Limits

Solution: (a) Q = dx = 0 j1- cos(R) dx
-L -L

11 k0 cos(wx/2E1 dx.
(b) V(x, y, z) r )2 yt ZitI

kitdc; L koax - 3)i yi zk] cos(i/2L)
(c) E(x, y, z) = f 3 j dx.

r
-L'

- 1)z / z93/2

2. What To Look For: See that E
x

= Ey
= O. Correct answer.

L k0(-xi zi) cos(w /2L)
Solution: t( 0, 0, z » L) = f a dx

-L
(x2

z )

4

z
3

k0 fl k

-L

L
x cos(4) dx k f B cos() dx.

21_
z
2

But ji" x cos(if) dx = 0 (odd about x = 0), jl B cos(ux/20 dx = Q.
-L

So t(0, 0, z » L) = (kQ /z2)k.

3. What To Look For: Correct dq. Correct dV. Correct answer.

Solution: See Figure 19. Area of ring = u[(3R)2 R2] 8irR2

Density of charge = Q/Area = Q/8irR2 dA = 2nr dr.

dq = (density)dA = (Qr dr)/4R2. Distance from dq to axial point = /rz + V.

dV = k 0/67271P:

v f3R r dr
(substitution: u = r2 h2, du . 2r dr)

4R R 6'4 hz

We h2t 1 -1/2 k0 r 2 z
WU du = .TOR h h J.

4R
2

2 2 f- 4R'
R h

50 Figure 19



Module

STUDY GUIDE

MAXWELL'S PREDICTIONS

INTRODUCTION

With this module, you will reach a milestone in your study of electromagnetic

phenomena. From past modules, you now have (at your fingertips, hopefully!)

the same basic laws of electromagnetism that Maxwell collected together in the

nineteenth century. However, as powerful as these laws were, Maxwell found

that there was a basic flaw - a logical inconsistency - in the one known as

Ampere's law. He was able to deduce (in advance of any direct experimental

test) precisely the correction that was needed. With this correction, the

addition of what is called the "displacement-current" term to Ampere's law,

it follows that a changing electric field gives rise to a magnetic field, just

as a changing magnetic field gives rise to an electric field according to

Faraday's law.

After he had predicted this mutual relationship, Maxwell was able to go on

and predict that the right combination of oscillating electric and magnetic

fields could literally kick itself through empty space. This is the pheno-

menon that we now call electromagnetic waves - which include, along with TV

and radio waves, the sunlight that we receive across 93 000 000 miles of space

without any significant loss of intensity other than that which necessarily

follows from its spreading out in all directions.

The development of the theory of electromagnetic waves from the basic laws of

electricity and magnetism that you have studied in past modules is one of the

most beautiful in physics, and at the same time one of the most mathematically

difficult that you will meet in this course. Thus if the arguments at times

seem long - bear with it! - the total module is fairly short.
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STUDY GUIDE: Maxwell's Predictions 2

PREREQUISITES

Before you begin this module,
you should be able to:

Location of
Prerequisite Content

*State and apply Ampere's law (needed for Objectives
1 through 3 of this module

*State and interpret Gauss' law (needed for
Objectives 2 and 3 of this module

*State Faraday's law, and apply it to calculate the
emf induced around a closed path (needed for
Objectives 2 and 3 of this module)

*Describe a simple form of electrical oscillator
(needed for Objective 3 of this module)

*Use and interpret mathematical descriptions of one-
dimensional waves (needed for Objective 3 of this
module)

*Calculate partial derivatives of functions of two
variables (needed for Objective 3 of this module)

Ampere's Law
Module

Flux and Gauss' Law
Module

Ampere's Law
Module

Inductance
Module

Traveling Waves

Module

Partial Derivatives
Review

LEARNING OBJECTIVES

After you have mastered the content of this module, you will be able to:

1. Displacement current - Use Ampere's law (including the displacement current)

to find the g field produced by a changing t field, or vice versa.

2. Maxwell's equations - State Maxwell's equations in vacuum (i.e., in the presence

of charges and currents, but with no dielectrics or magnetic materials),

and indicate the physical significance of each.

3. Electromagnetic waves - For a plane electromagnetic wave, use information

about t or g at given times or places, the direction the wave moves, the

frequency, and/or the wavelength to determine other information in this list;

also, write down mathematical expressions for the components of t and g, and

show that your expressions satisfy the appropriate simplified differential

form of Maxwell's equations.
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STUDY GUIDE: Maxwell's Predictions 3(8 1)

TEXT: Frederick J. fteche, Introduction to Physics for Scientists and Engineers
(McGraw -Hill, New York, 1975), second edition

SUGGESTED STUDY PROCEDURE

Read the General Comments on the following pages of this study guide along with
Sections 28.1 through 28.5 and 29.1. Optional: Read Sections 28.6 through 28.8.

When you compare Maxwell's equations (28.1) with the same equations in §pneral
Comment 2, you will find slight differences of notation: Eq q, dt dt, and
fa dii i. Also note that in the absence of a dielectric, in the last term
of Eq. (28.1d), c becomes just co. You will find that the derivation of the
simplified differential form of Maxwell's equations, Eqs. (28.6) and (28.7), is
quite similar to that given in General Comment 3, between Eqs. (9) and (15); take
your picky

Study the Problems with Solutions and work the Assigned Problems. Then take the
Practice Test, and work some Additional Problems if necessary, before trying a
Mastery Test.

NECK

Objective Readings
Number

Problems with Solutions Assigned
Problems

Additional

Problems

(Chap. 28)Study Guide Text Study Guide

1 General Comment 1;
Secs. 28.1, 28.2

A Illus.a
28.1

D, E Quest.a 4
thru 9

2 General Comment 2; 8 f

Eqs. (28.1) in
Sec. 28.2

3 General Comment 3;
Secs. 2°.3 thru

C Illus.
28.2

G, H, I Probs. 1,
2, 4 thru

28.5, 29.1 9, 12, 14

a
Illus. = Illustration(s). Quest. = Quest3ion(s).
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STUDY GUIDE: Maxwell's Predictions 3(HR 1)

TEXT: David Halliday and Robert Resnick, Fundamentals of Physics (Wiley, New
York, 1970; revised printing, 1974)

SUGGESTED STUDY PROCEDURE

Read the General Comments on the following pages of this study guide, along with
Sections 34-4 through 34-6 and 35-1 through 35-3.

You will find that Maxwell's equations stated in Table 34-2 on p. 636 are exactly
the same as in.General Comment 2, except that we have used a (instead of d) for
the element of area. Your text gives a complete and accurate derivation of the
simplified differential form of Maxwell's equations, Eqs. (35-4) and (35-8).
However, the discussion is rather involved; you should find the corresponding
derivation between Eqs. (9) and (15) of General Comment 3 easier to follow. When
reading the derivation in your text, note that E means Ey and B means B.

Study the Problems with Solutions and work the Assigned Problems. Then take the
Practice Test, and work some Additional Problems if necessary, before tfying a
Mastery Test.

HALLIDAY AND RESNICK

Objective Readings Problems with Solutions Assigned Additional

Number Problems Problems

Study Guide Text Study Guide

1 General Comment 1; A Chap. 34, D, E Chap. 34, Probs.
Secs. 34-4, 34-5 Ex.a 4, 5 19 thru 28;

Quest.a 6 thru
11

2 General Comment 2; B

Sec. 34-6

3 General Comment 3; C G, H, T Chap. 35, Probs.
Secs. 35-1 thru 1, 5 thru 9;

35-3 Quest. 2

a
Ex. = Example(s). Quest. = Question(s).
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STUDY GUIDE: Maxwell's Predictions 3(SZ 1)

TEXT: Francis Weston Sears and Mark W. Zemansky, University Physics (Addison-
Wesley, Reading, Mass., 1970), fourth edition

SUGGESTED STUDY PROCEDURE

Read the General Comments on the following pages of this study guide, along with
Sections 36-8 and 36-9. Optional: Read Sections 32-8, 36-1, 36-2, 36-5, and 36-7.

Section 36-8 of your text is devoted to a derivation of the simplified Maxwell's
equations, Eqs. (36-17) through (36-19), which is more detailed than the derivation
given in General Comment 3 between Eqs. (9) and (18), but equivalent to it. You
will probably find you do not need to read both these derivations; take your choice!
In your text's derivation, note that H means Hz and E means Ey.

Your text uses the auxilliary quantities Ti and in the absence of dielectric and
magnetic materials (which will be the case in 0.is.yodule), these are simply
proportional to the more familiar fields I and E: MI and 0 = EDE. In Section
36 -9 and i the optional readinos,..you will also encounter the polarization
"t . - EDE and the magnetization M = A/p0 - but these vanish when there are no
dielectric or magnetic materials, and so need not concern you. Maxwell's equations
given in Eqs. (36-20 through (36-23) reduce to those of General Comment 2, when
the conditions P = = 0 are used, along with the identifications of 1 and above
and the notation changes Qf q, Ic + i, and d; 4- dt. Some other notation changes
you will encounter are op 4- WE, 0 4- 48, and ID 4- id.

Study Problems A to C and work Problems D to I. Take the Practice Test before
trying a Mastery Test.

SEARS AND ZEMANSKY

Objective Readings Problems with Solutions Assigned Problems
Humber

Study Guide Study Guide

1 General Comment 1 A 0, E

2 General Comment 2;
Eqs. (36-20) thru
(36-23) in Sec. 36-9

3 General Comment 3; C G, H, I
Sec. 36-8
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STUDY GUIDE: Maxwell's Predictions 3(WS 1)

TEXT: Richard T. Weidner and Robert L. Sells, Elementary Classical Physics
(Allyn and Bacon, Boston, 1973), second edition, Vol. 2

SUGGESTED STUDY PROCEDURE

Read the General Comments on the following pages of this study guide, along with
Sections 35-1 through 35-3.

Your text gives a very nice and direct demonstration in Section 35-3 that a travel-
ing pulse of crossed E and 8 fields is a solution of Maxwell's equations. However,
it does not derive the differential form of Maxwell's equations for plane waves;
if you want to see more discussion of this topic than is found in General Comment 3,
refer to one of the texts listed under Additional Learning Materials below. The
first page of Section 35-1 in your text and General Comment 1 in this study guide
giv.e alternate versions of the argument for the displacement-current term in
Ampere's law; take your choice! When reading your text's discussion, note that
there is no reason for the hemispherical surface in Figure 35-2 to touch the edge
of the plate; this is just an accident of the drawing.

Study the Problems with Solutions before working .'roblems 0 through I. Then take
the Practice Test, and work Problem 35-1 if necessary, before taking a Mastery Test.

WEIDER AHD SELLS

Objective
Humber

Readings Problems with Solutions Assigned Additional
Problems Problems

Study Guide Text Study Guide

1 General Comment]; A Ex.a 35-1 D, E

Sec. 35-1

2 General Comment 2; B
Sec. 35-2

3 General Comment 3; C G, H, I 35-1

Sec. 35-3

. = Example.
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STUDY GUIDE: Maxwell's Predictions 4

GENERAL COMMENTS

1. The Consistency Argument for the *Displacement Current"

Let us calculate the magnetic field around the long wire in Figure 1. It is a

little different from the long wires you have seen in this course before: there

is a capacitor in the middle of it. Rut this does not, of course, preclude a

pulse of current for a short time, as the capacitor charges up - or a pulsating

back-end-forth current for an indefinite period of time.

We first construct a circle of radius r, such as C1. The current through the

surface Sl bounded by C1 is just io; and thus Ampere's law yields

polo .,*1 a dt = 21r8(r) or B(r) =
u010

Figure 1

(1 )

We are not at all surprised, of course, when a repetition of this calculation

using C2 and S2 yields the same result. But we are in for a rude shock when we

try C3 and S3; there is no current through S3; therefore the original form of

Ampere's law yields

0 = 4c3 I di = 2v6(r) or 8(r) = 0 at C3! (2)

When we get down to C4, its surface again cuts through a current 10, and once

again we get the result (1).

Is this possible? Can 8 really suddenly drop to zero just when we get opposite

the gap of the capacitor? It hardly seems so; we must have somehow missed some -

57



STUDY GUIDE: Maxwell's Predictions 5

thing when we used S3. The most obvious thing that we did not use was the flux

(or t field) in the space between the capacitor plates - and clearly this flux is

related to the current 10 in the wire. Since the electric field of a capacitor

lies costly between the plates, and the charge resides mostly on the inner surfaces

of the plates, Gauss' law applied to a closed surface containing the upper plate

yields

q = co 5S t c04©. (3)

Since i
0

is just the derivative of q,

io = dq/dt = co doedt.

Wonderful - this solves our problem!! If we define the "total" current by

;tot s d'

where id E to doo/dt, and use this instead of just i in Ampere's law:

fc voitot = uo(i id).

(4)

(5)

(6)

then it does not matter which of the circles Cl through C4 we use - we always

find, consistently, that

B(r) = v0i0/21r! (7)

If we happen to use a surface that intersects the wire, then we pick up i = io

and i
d

vanishes (E = 0 outside the capacitor); if we use a surface that passes

through the capacitor gap, we pick up id = i0 and i vanishes. (There is no "true"

current between the capacitor plates.) For historical reasons, id is called the

"displacement current."

You may wonder how it is that we (or Maxwell, for that matter) can get away with

making changes like this to an equation, such as Ampere's law, which was based

on experimental observation. The reason is that the added term id. was too small

to be observed in the phenomena studied up to Maxwell's time. On the other hand,
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STUDY GUIDE: Maxwell's Predictions 6

it is absolutely essential to the now-familiar phenomenon of electromagnetic waves!

2. Maxwell's Equations

Here we record, for reference, the integral form of Maxwell's equations .in empty
space - i.e., where there are no dielectric or magnetic materials.

Gauss' law for electricity: ect 4 t q(inside S). (8a)

Gauss' law for magnetism: Os dl:= 0.

clop

Faraday's law:
SSC t cit

Ampere's law:
doE

OcI cit = uoi Pogo''

(8b)

(8c)

(8d)

In the last two, o means the flux through any surface bounded by the curve C,
and i is the current through such a surface.

Your first reaction may be that Gauss' law for magnetism is new to you; but really
it is not! In regions where there are no electric charges, the right-hand side of
Eq. (8a) is zero, and Gauss' law for electricity becomes just the statement that
the electric flux through any closed surface is zero - or, equivalently, that in
such regions electric field lines never end. You tacitly used the corresponding
property of magnetic fields when you calculated, say, the field B inside a toroid
by using Ampere's law: you assumed the flux was constant around the toroid - that
field lines did not abruptly end. This is just the content of Eq. (80. The
difference between the right-hand sides of Eqs. (8a) and (8b) arises from the fact
that (as far as we know) no magnetic "charges" exist anywhere.

3. Plane Electromagnetic Waves

Undoubtedly, electromagnetic waves are a difficult phenomenon to comprehend properly.
This difficulty starts with the problem of visualizing just exactly what is going

on: There are E and B fields oscillating throughout three-dimensional space, and
these oscillations somehow travel through space - difficult enough to visualize in
3-space, let alone describe by diagrams on a flat sheet of paper!

nonetheless, the diagrams in Figures 2, 3, and 4, contrived for this purpose by
various people, may help to explain what is going on.. The first diagram,
Figure 2, shows a pulse of constant amplitude traveling along the x axis with

velocity t. It can, in fact, be shown that an electric field pulse traveling
along as in that diagram must be accompanied by a magnetic field pulp, according
to Maxwell's equations - and vice - versa! That is, a pulse of E and 0 fields
together is a valid solution to Maxwell's equations. To the extent that we have
confidence that those equations are correct, they predict the existence of such
pulses as an observable phenomenon.
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Figure 3

7

x

Figure 2

Successive "snapshots" of

a plane sinusoidal electro-
magnetic wave advancing toward
you. This is..a representation

of the t and B fields in a
plane through point P; the
oscillation of their strengths
is indicated by variation in
the densities of field lines.

Figure 4*

*This diagram was taken from Fundamentals of Physics, by David Halliday and Robert
Resnick (Wiley, New York, 1970; revised, 1974J, with permission of the publisher.
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STUDY GUIDE: Maxwell's Predictions 8

If we now imagine a series of such pulses traveling along one after another, we
have a wave train. In fact, the most easily produced electromagnetic waves are
a kind of wave train known as a sinusoidal wave. Since it is even harder to draw
pictures of wave trains than of individual pulses, it is customary to draw only
the field vectors for points on the axis along the direction of propagation; such
a diagram for a sinusoidal plane wave is shown in Figure 3. (You will now see why
this is called a sinusoidal wave.) The term "plane wave" refers to the fact that
the t and fields are the same throughout any one plane perpendicular to the axis
of propagation (the x axis in Figure 3).

Another view of a plane sinuloidalftlectromagnetic wave is shorn in Figure 4.
Here you are looking at the £ and 8 fields in a plane paeallel to the yz plane.
The y axis points up in this picture, and the z axis points to your left; the
wave is advancing toward you, along the positive x axis. Of course, there is
nothing special about the x axis as far as an electromagnetic wave is concerned;
the waves shown in the pictures could just as well be traveling along the y or z
axis, or in some arbitrary direction. However, there are several characteristics
of the waves shown that are required by Maxwell's equations to be true of any
plane electromagnetic wave:

(1) Electromagnetic waves in vacuum always travel with the speed of light
1.00 xc = l08 m/s.

(2) The rand fields are in phase, i.e., their maxima occur at the same
place.

(3) Electromagnetic waves are transverle, and furthermore r is perpendicular
to Ir. Also, the direction, of t, and c form a right- hanied set.

In terms of unit vectors, E x = c.

When we come to a quantitative treatment of electromagnetic waves, we are
immediately faced with the second part of the complexity of understanding these
waves. You probably feel, justifiably, that the various Maxwell's equations that
have served so well in solving problems up to this point are complicated enough
to apply. However, using them directly on electromagnetic waves becomes much
harder. In actual fact, when people deal with electromagnetic waves, they custom-
arily use an apparently different, but mathematically equivalent, set of equations
known as the "differential form' of Maxwell's equations - that is, a set of equa-
tions expressed in terms of derivatives. Sad to say, proving the equivalence is
a very involved piece of work; and furthermore, these latter equations are too
cumbersome to write down in their generality without using notation with which
you are not likely to be familiar!

But the good news is that much of this complexity (though not all of it!) goes
away if you look just for solutions of a very particular form, namely, plane
waves traveling along, say, the x coordinate axis. Explicitly, let us look for
solutions in which the fields are of the forms

8
x
= By = Ex =Ez = 0 everywhere,

8
z

= 8
z
(x, t) and Ey = E

Y
(x, t) (i.e., no dependence on y or z). (9)
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STUDY GUIDE: Maxwell's Predictions 9

First, we note that the first two of Maxwell's equations, Gauss' laws for t and
I, are immediately satisfied by such fields: the flux lines are continuous, as
you can see by drawing a sketch of them, and as they are required to be in the
absence of charges.

Our next step is to cast the second two of Maxwell's equations in the absence of
charges,

OP t a = -(108/dt (Faraday's),

6 d1 = eopo(dtE/dt) (Ampere's), (101

into their differential form for the simplified case of fields satisfying Eq. (9).
Applying, first, Faraday's law to the upper rectangle in Figure 5, remembering
that Ex = 0 by Eq. (9) above, we get

E (x ax, t) ay - E (x, t) ay [aBz(x, t)Iat] ax ay.

Figure 5

You will notice that B has been evaluated at the left edge of the rectangle,

whereas its average value is needed for exact equality; however, Eq. (11) will

become exact when we take the limit ax 0 below. Also, note that the time

derivative is a partial derivative, since Bz depends on x as well as t. The

left-hand side can be simplified by setting

E (x ax, t) = E (x, t) 4.13E (x, t) /ax] ax, (12)

which also is allowable because of the limit ax 0 to be taken below. Thus,

Faraday's law reduces to

Ey(x, + [gy(x, t) /ax] ax Ay - Ey(x, t) ay = 43B(x, t) /at] ax ay.(13)

Canceling a term, dividing by AX ay, and taking the limit ax 0 to validate
the approximations above yields the simplified differential form of Faraday's
law, valid under the conditions (9):

[Simplified differential form
3E (x, t) /ax = -3B

z
(x, t)/2t.y of Faraday's law in empty space.] (14)
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STUDY GUIDE: Maxwell's Predictions 10

In exactly the same way, applying Ampire's law (with i = 0) to the lower rec-
tangle in Figure 5 yields

[Simplified differential313
z
(x

*
t)/3x = -0 E DE (x, t) /at]. (15)

0 0 y ' form of Ampere's law
in empty space.]

Another important equation can be obtained by differentiating the first of these
equations with respect to x and the second with respect to t; this makes the
right-hand side of Eq. (14) just the negative of the left-hand side of Eq. (15).
They can then be combined to yield

B
2
Ey(x, t)/3x

2
= noE0(3

2
Ey(x, 0/3t

2
]. CalmjggLisnfor Ey.] (16)

Expressions of the form

E (x, t) = E
m

sin(kx 4- 00. pave traveling in the =iic direction.] (17)

satisfy the above wave equation, as you can readily check by direct substitution,

provided k
2 = nee2 . This expression should look familiar to you, from the

module Traveling Waves, and, hopefully, you will remember that the speed of such

a wave is given by v = w/k. (If you do not remember the argument leading to

this result, you should really look it up.) Since the speed of an electromagnetic

wave is usually denoted by c, we have

c = w/k = 1/1/-1/470: (18)

This fundamental relationship between the speed of electromagnetic waves and
the constants occuring in the equations of basic electromagnetism (since then
verified experimentally to a high degree of accuracy) was one of the very
impressive successes of Maxwell's theory.

Combining Eqs. (14) and (15) the other way around (this is left as a problem)

yields an equation of the same form as Eq. (16) except that Ey is replaced by

That is, B
z

satisfies the same differential equation as Ey, and it can thus be

expressed in a similar form:

B
z

= m sin(k'x w't + 0). (19)

(The phase constant 0 is necessary because we do not yet know the phase relation
between Ey and B

z'
) Substituting Eqs. (17) and (19) into Eq. (14) yields

kE
m

cos(kx wt) = +0'8
m

cos(k'x ret + 0). (PO)
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STUDY GUIDE: Maxwell's Predictions 11

This will be satisfied for all values of x and t if and only if

k = = to, 0 = 0, Bm = ;(k/w)Em = -TEm/c. (21)

Thus we have verified the claim [No. (2) on p. 8] that the t and Ifields are in
phase (0 = 0). The sign in the last of Eqs. (21) is just what we need for the
right-hand property noted above [No. (3)]; and we have also found another charac-
teristic property of electromagnetic waves:

(4) 1E011 = clBml.

Since you will be using expressions of the form of Eq. (17) in working the prob-
lems of this module, we close these comments by recalling the relations among
k, w, the wavelength A, the frequency f, and the wave speed c that you learned
in the module Traveling Waves:

A = 2a/k; w = 2af; c = w/k = Af. (22)

If you cannot recall how these relations are obtained, refer to Traveling Waves
to refresh your memory.

ADDITIONAL LEARNING MATERIALS

Auxilliary Reading

Stanley Williams, Kenneth Brownstein, and Robert Gray, Student Study Guide
with Programmed Problems to Accompany Fundamentals of Physics and Physics,
Parts I and II by David Halliday and Robert Resnick (Wiley, New York, 1970).

Objective 1: Section 33-4;
Objective 2: Section 33-5;
Objective 3: Sections 34-1 and 34-2.

Various Texts,

Frederick J. Buechel Introduction to Physics for Scientists and Engineers (McGraw-
Hill, New York, 1975), second edition: Sections 28.1 through 28.5 and 29.1.

David Halliday and Robert Resnick, Fundamentals of Physics (Wiley, New York, 1970;
revised printing, 1974): Sections 34-4 through 34-6 and 35-1 through 35 -3.

Francis Weston Sears and Mark W. Zemansky, University Physics (Addison-Wesley,
Reading, Mass., 1970), fourth edition: Sections 32-8 and 36-7 through 36-9.

Richard T. Weidner and Robert L. Sells, Elementary Classical Physics (Allyn and
Bacon, Boston, 1973), second edition, Vol. 2: Sections 35-1 through 35-3.

Your attention is especially directed to Section 35-1 of Weidner and Sells for an
alternate preseaation of the arguments for the displacement-current term, and to
Section 35-3 of the same text for a demonstration that a moving pulse of crossed
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t and .g fields is a solution to Maxwell's equations. Also, Section 28.4 of Bueche
seems to give the most straightforward derivation of the simplified differential
form of Maxwell's equations.

PROBLEM SET WITH SOLUTIONS

Some Facts You May Wish to Use While Working These Problems

c = 3.00 x 108 m/s. p
0
= 4h t x 10-7 Wb /A m. e0 8.9 x 1012

C
2/N

m2.

For fields satisfying B
x
=B

y
=E

x
= Ez =0 everywhere, and Bz B

z
(x, t) and

Ey = E
Y
(x, t) (no dependence on y or z), Maxwell's equations simplify to the

conditions

and

BE /Ox = -BB
z/Ot

(Faraday's)

BBz/3x = -cop0(3Ey/2t) (Ampere's).

A(l). A long cylindrical conducting rod with radius a is centered on the x axis
as in Figure 6. A narrow saw cut is made in the rod at x = b. An increasing
current it = At (with A > 0) flows in the rod toward the right; by some
ingenious means, it is arranged that this current is uniformly distributed
over the cross section of the rod. At t = 0, there is no charge on the cut
faces near x = b.
(a) Find the magnitude of the total charge on these faces, as a function
of time.
(b) Use Gauss' law to find E in the gap at x = b as a function of time.
(c) Sketch or describe the magnetic lines of force for r < a, where r is
the distance from the x axis.
(d) Use Ampere's law to find B(r) in the gap for r < a.
(e) Compare with what you get for B(r) in the rod for r < a.

a

Figure 7

Solution

(a) Since 11 = At = dq/dt, and q(0) = 0, we must have q = fil dt = (l /2)At2.

(b) Applying Gauss' law to a closed surface enclosing the left-hand face of- the
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STUDY GUIDE: Maxwell's Predictions 13

cut yields q = co OE = e0ira2E. Therefore E = ql2 =

cOva
(c) See Figure- 7: the current is assumed to be into

(l /2)At2

2

cOla
the paper and increasing.

This diagiam is valid both inside the rod and in the gap.

(d) Apply Ampere's law, Ot dl = po(i id), to a circular path of radius r in
.the diagram. In the gap, i = 0 and id = c(dOE/dt) = cur2(dE/dt) = Au*2/a

2
.

We thus get 211r0 = p0Atr2/a2; and

(l /2)p0Atr

B

wa
2

(e) Inside the rod, id = 0, and through a circular path of radius r the current i

will be (area of path/cross-sectional area of rod) x i = (r2/a2)ii. So applying

Ampere's law to such a path yields 2111.8 = p0(r2/a2)-11; and the field is again

(l /2)p0Atr

=

wa

13(2), Identify the Maxwell equation that is equivalent to or includes:
(a) Electric lines of force end only on electric charges.
0)) The displacement current.
(c) Under static conditions, there cannot be any charge inside a clnductor.
(d) A changing electric field must be accompanied by a magnetic field.
(e) The net magnetic flux through a closed surface is always zero.
(f) A changing magnetic field must be accompanied by an electric field.
(g) Magnetic flux lines have no ends.
(h) The net electric flux through a closed surface is proportional to the
total charge inside.
(i) An electric charge is always accompanied by an electric field.
(j) There are no true magnetic poles.
(k) An electric current is always accompanied by a magnetic field.
(1) Coulomb's law, if the equation for the electric force is assumed.
(m) The electrostatic field is conservative.

Solution

(4)

co t d = q (inside S) (Gauss' Law).

os I cg a 0
(Gauss' Law for Magnetism).

4:r a = -d411/dt (Faraday's Law).

oc dt = poi poco(d§E/dt) (Ampere's Law).
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In terms of the equation numbers above: (a) E (b) E (4); (c) E (1); (d) = (4);

(e) E (2); (f) E (3); (g) s (2); (h) s (I); (i) s (I); (j) E (2); (k) E (4);

(1) a (1); (m) E (3). [In regard to (m), dig back in your memory to recall that

a conservative force can be defined by the requirement that 0 ? dt =

C(3). The plane electromagnetic wave from a distant radio station produces a

vertical magnetic field with amplitude B0. The radio station is directly

north of you, and transmits on a frequency fs.

(a) How should you orient your coordinate system to make use of the

simplified differential form of Maxwell's equations (SOME) derived in this

module?

(b) With respect to this coordinate system, write expression(s) for the

components of the magnetic field as a function of x, y, z, and t.

(c) Use the SOME to obtain a wave equation for the nonzero component oft.

What information does this wave equation give you regarding the parameters

in your expression(s) in part (b)?

(d) Which components of t must be zero?

(e) Apply the SDME to your expression(s) in part (b) to obtain expression(s)

for the derivatives of the 'nonzero component oft.

(f) Write a suitable expression for this component, and show that it

satisfies your expression(s) in part (e).

Solution

(a) The x axis should point either away from or toward the station; let us make

it point south, so that tikt wave travels in the +x direction. The z axis should
point up ZTaiiiim, so that B lies along it; let us make it point E.
Then the y axis must point east, for a right-handed coordinate system.

(b) B
x

= By 0; 8
z

= B sin(kx wt). [Of course, we could also use cos(kx - wt),

or sin(kx wt + 0), etc.]

(c) Differentiating the simplified form of Faraday's law with respect to t yields

a
2
E
y
/ax at = -D

2

4
B../Dt

2,
and differentiating the simplified Ampere's law with

respect to x yields 3913
z
/3x

2

- -cop° D
2
Ey/Dt ax. The term D

2
EiDx at occurs in

both these equations; we can thus coubine them to obtain 3
2
B
z
/8x

2
= e

0
p
0

3
2
B
z
/Dt

2
.

If expression for B in part (b) is substituted into this equation, we get

-k B sir:kx - wt) = -w2e p B sin(kx wt); this requires that k2 = p
0 0 0 0 0 0'

or k/w = 1/c).
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STUDY GUIDE: Maxwell's Predictions 15

(d) Ex = Ez = 0, in order to make E x 8 = c.

(e) Direct differentiation and the SDKE yield 3E.y/3x = -38z/dt = -1(1280 cos(kx wt)

and 3Eynt = -(1/P0s0)(aDyi3x) = -(k/p0s0)80 cos(kx - wt).

(f) Ey = c8
0

sin(kx - wt). This satisfies the first equation above because

ck = c(w/c). = w and cw = c(ck) = c2k = k /c0p0.

Problems

D(1). A parallel-plate capacitor with circular plates 20.0 cm in diameter is
being charged as in Figure 8. The displacement current density throughout
the region is uniform, into the paper in the diagram, and has a value of
20.0 A/m2.

(a) Calculate the magnetic field strength B at a distance R = 5.0 cm from
the axis of symmetry of the region.
(b) Calculate dE/dt in this region.

ON. 4=1/ OW. .1. Om.

Figure 8 Figure 9 Figure 10

b

E(1). The capacitor in Figure 9 consisting of two circular plates with area
A = 0.100 m2 is connected to a source of potential V = Vmax sin wt, where
Vex = 200 V and w = 100 rad/s. The maximum value of the displacement
current is id = 8.9 x 10-' A. Neglect "fringing" of the electric field
at the edges of the plates.
(a) What is the maximum value of the current i?
(b) What is the maximum value of d4E /dt, where 4E is the electric flux
through the region between the plates?
(c) What is the separation d between the plates
(d) Find the maximum value of the magnitude of B between the plates at a
distance R = 0.100 m from the center.

F(2). Name and state the four Maxwell equations in vacuum.

6(3). Under what conditions do the following expressions satisfy Maxwell's
equations? (A, a, and b are constants.)
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STUDY GUIDE: Maxwell's Predictions 16

(a) Ey =Ab(x - at), 8z = A(x - at).

(b) Ey = Ae(x
at),

Abe(x
at).

H(3). (a) Write an equation for the electric field component of a sinusoidal
electromagnetic plane wave traveling in the negative x direction, having
an amplitude of 1.40 V/m and a wavelength of 600 m.
(b) What is the frequency of this wave?
(c) Now far apart are two points where the t fields are 60° out of phase?
(d) Find the amplitude of the magnetic field component of this wave.

1(3). The 4 field in Figure 10 at a given instant of time is independent of y and z,
but points in the positive z direction and has a magnitude that increases
linearly from zero to Bo ketween x = a and x = b. What do Maxwell's
equations tell you about E, for a < x < b?

Solutions

D(1). (a) B = (1/2)pR x (displacement-current density) = 6.3 x 10-7 T.

(b) dE/dt = 2.20 x 10 12 V/m s.

E(1). (a) 8.9 x 10
-6

A. (b) 1.00 x 10
6

V m/s. (c) 2.00 mm. (d) 5.6 x 10 12 T

[Did you get too large a value for (d)? If so, check that you used the correct
displacement current.)

F(2). (a) (1) Gauss' law for electricity:

c0 'S
E d = q (inside S).

(2) Gauss' law for magnetism:

fs dl = C.

(3) Faraday's law of induction:

4t . dt = -d0B/dt.

(4) Ampre's law (corrected):

10 dt = poi + poeo(d0E/dt).

In (3) and (4), 0 means the flux through any surface bounded by the curve C, and
i is the current through such a surface.

G(3). (a) The simplified Maxwell's equations yield

Ab = i-aA and A = 4-e0p0aAb.

These will b6 satisfied if b = a = cOpO =

fig
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(b) In the same way, Maxwell's equations will be satisfied if

b = 1/a = = l/c.

H(3). (a) Take the y axis along t; then Ey = Em sin(kx f it 4- 4) in general,

though we can usually assume 4 = 0. Em
= 1.40 V/m, k = 2w/A = 1.05 x 10-2/m, and

4,3 = ck = 3.14 x 10 /s.

(b) f = w/25 0 5.0 x 105 Hz.

(c) 1/6 s 100 m.

(d) 8m = Em/c = 4.7 x 109 T.

I(3). The graph Figure 10 tells us the value of aBz/ax; so we refer to the simplified

form of Ampire's law. This tells us that aEyiat s -c2(aBz/3x) = -c2B0/(b - a)

for a < x < b; that is, t is increasing with time in the negative y direction.

PRACTICE TEST

Some Facts You May Wish to Use While Working These Problems

c = 3.00 x 10
8
m/s. po = 4w x 10

-7
1./b/A m. co = 8.9 x 10-12 C

2
/N m

2
.

For fields satisfying Bx sB
y x

= Ez = 0 everywhere, and Bz =Bz (x, t) and

E
y

= E
y
(x, t) (no dependence on y or z), Maxwell's equations simplify to the

conditions

and

aEyiax s aB
z
/at (Faraday's)

aBz /ax
c0u0(Eyiat)

(Ampire's).

1. A parallel-plate capacitor has square plates 1.00 m on a side, as in Figure 11.
There is a charging current i = 2.00 A flowing into the capacitor.
(a) What is the displacement current through the region between the plates?
(b) What is dE/dt in this region?
(c) What is the displacement current through the square (dashed) path between
the plates?
(d) What is 8- dt around this square path?

2. (a) State Maxwell's equations in vacuum.
(b) In your answer to (a), identify:

0) Faraday's law of induction.
(ii) The displacement-current term.
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Practice Test Answers TL

1. (a) 2.00 A. (b) 2.20 x 1011 V/m s. (c) 0.50 A. (d) 6.3 x 10 7Wb/m.

2.
cO/S

dA =q.

fs d= 0.

ific ' dr = -doBidt.

s6c t di= pp co(doEidt)].

3. (a) Down. (b) f = 2.25 x 109 Hz. X = 13.3 cm. (c) 1.00 x 10-14T.

(d) North and east, respectively. (e) B
x

= B
y

= 0, B
z

= -E
y
/c.

The given equation is of the form Ey = E
m

cos (kx wt),

so Bz = -(Em(c) cos(kx cot). Substituting these into the two simplified

Maxwell's equations gives -kEm sin(kx wt) = -(wE.,m /c) sin(kx wt) and 4.(kEm(c)

sin(kx wt) =
0
p
0
wE
m

sin(kx wt). Since c
0
p
0
= l/c

2
, these are both satisfied

provided co = ck; the values given in the problem satisfy this condition.

-suopenba ssaamxew Ropes pue 3Lio sluauodwoo

oaazuou aq4 4eq4 moqs -a ;o sluauodmoo aq4 10; Tuotsaildxa awn (a)
WI 4 uatim luod a pue op Aem einqm '0 =. x 4V (p)

mat; opau5em ButRuedmome slt J.° apnuLdme aq4 st 4eqg (3)
Lq46uaLaAem LAbuanbali slt st 4eqm (q)

OutLaAel4 amm six R. uolloaltp q3 4M ui (e)
414.1ou slutod slice i aq4 pue do slutod sIxe x

40 = z3 =
X
3 pue (s (4601. x 2s17) (xsSt)P03 (m/A4 00'E) =

pLalk 3t14381.8 aq4 seq anent opau6euxoxpata aueLd v

pvat6 dot

ain6ti
toel

'E

Eft suotP4Iald satamomM :301D9 AORIS



MAXWELL'S PREDICTIONS Date

Mastery Test Form A

Name

pass recycle

1 2 3

Tutor

Some Facts You May Wish to Use While Working These Problems

c = 3.00 x 108 m /s. uo = 42 x 107 16/A m. g0 = 8.9 x 10-12 C2111 m2.

For fields satisfying 8x =By =Ex =Ez = 0 everywhere, andBz =B(x, t),

Ey = E
Y
tx, t) (no dependence on y or z), Maxwell's equations simplify to the condi-

tions

aEy/ax = -aBziat (Faraday's), aB2 /2x = -coppEy/at) (Ampere's),

1. The parallel-plate capacitor in Figure 1 is made from two rectangular metal
plates of the dimensions shown, spaced 5.0 um apart. Along the dotted rec-
tangular path between the plates,

II' di = 2.00 x 10-8 Wb/m.

(a) What is the displacement current through this path?
(b) What is the (total) current i?

(c) If the potential difference between the plates is V, what is dV/dt?

2. (a) State Maxwell's equations in vacuum.
(b) In your answer to (a), identify:

(i) Ampere's law.

(ii) The equation that tells you whether electric field lines terminate,
and where.

3. A plane electromagnetic waves is traveling to the right along the x axis, as
shown in Figure 2. At x = a, E

r

(a, t) = 0, and Ey(a, = E0 cos(mot) with E0
positive and w = 3.00 x 106 rags.
(a) At x = a, are any of B

x
, By

'
and B

z
identically zero (i.e., at all times)?

(b) Write expressions for the nonzero components of t(x, t) and l(x, t).
Evaluate the constants occurring in these expresssions as completely as possible.

(c) Show that your expressions satisfy Maxwell's equations.

Figure 1

Edge view
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MAXWELL'S PREDICTIO'IS

Mastery Test Form B

Hare

Date

pass recycle

1 2 3

Tutor

Some Facts You May Wish to Use While Working These Problems

c = 3.00 x 10 np/s.
o
= 47 x

For fields satisfyingBX = By =Ex =

Ey = E
Y
(x, t) (no dependence on y or

conditions

legbfAm. sO = 8.9 x 1012 em

E
z

= 0 everywhere, and B
z
= B

z
(x, t),

z }, Maxwell's equations simplify to the

3Ey/ax = -38z/at (Faraday's),

382/3x = -s0u0(2Ey/at) (Ampere's).

1. The electric field between the circular plates of a plane, parallel-plate
capacitor of radius 10.0 cm is given by E

Z
= E sinwt, where E

m
= 2.00 x 10" V/m

and w = 6.0 x 103 rad/s.
(a) What is the maximum displacement current through the region between the
plates?
(b) What is the maximum magnetic field at a radius of 5.0 an from the axis
of the circular plates?

2. (a) State Maxwell's equations in vacuum.
(b) In your answer to (a), identify:

(i) Gauss' law for the electric field.
(ii) The condition that magnetic field lines do not terminate.

3. A distant radio station, transmitting at 1.50 x 10
6
Hz, produces a vertical

electric field with Ey = +2.00 pir/m (its maximum value) at the origin of the
coordinate system when t = O. This wave is progressing in the negative
direction along the x axis.
(a) Obtain expressions for all the components of E and t as functions of x and t.
(b) Express Bz as a function of t at the point x = y = z = 50 m.
(c) Show that your expressions (a) satisfy Maxwell's equations.
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MAXWELL'S PREDICTIONS Date

Mastery Test Form C

Mame

pass recycle

1 2 3

Tutor

Some Facts You May Wish to Use While Working These Problems

c = 3.00 x 10
8
m/s. po = 4ir x 10

-7
tibiA m. so = 8.9 x 10

-12
C
2
/11 m2.

For fields satisfying 8x = By = Ex = Ez = 0 everywhere, and 82 = t),

Ey = E1 (x, t) (no dependence on y or z), Maxwell's equations simplify to the

conditions

aEyiax = -az/at (Faraday's).

28z/ax = -sopo(aEyiat) (Ampire's).

1. The capacitor shown in Figure 1 is made from two circular plates with a radius
r = 0.100 m, separated by a distance d = 2.00 x 10-3 m. Neglect "fringing" of
the electric field at the edges of the plates. At a given instant there is a
magnetic field of strength 8 = 5.0 x 10-10 T at a point midway between the
edges of the two plates.
(a) find the displacement current id through the region between the plates.
(b) Find the current i flowing into the capacitor.
(c) Find dE/dt in the region between the plates.

2. (a) State Maxwell's equations in vacuum.
(b) in your answer to (a), identify:

(i) Gauss' law for the magnetic field.
(ii) The conservative nature of the electrostatic field.

3. The star Betelgeuse is directly overhead (i.e., on your positive x axis).
Assume it has emitted a sinusoidal electromagnetic wave with wavelength
6.0 x 10-5 m that is now striking the Earth.
(a) Give as complete a mathematical description of this wave as you can; i.e.,
give expressions for the components of the electric and magnetic fields,
and evaluate as many of the constants as possible with the information given.
(b) Show that your expressions satisfy Maxwell's equations.

Figure 1

rtn
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MAXWELL'S PREDICTIOIS A-1

MASTERY TEST GRADING KEY - Form A

1. What To Look For: (b) Check that the correct displacement current is used,
i.e.,

Id(total)
rather than just id.

Solution: (a) According to Ampire's law, Oc g (ft = 1,0(i + id). Between the

plates, i = 0. Thus, the current passing through the rectangle is

d
= (1 /u0) 1

C
B di= (2.00 x 10

-8
)/(4' x 10

-7
) = 15.9 mA.

(b) Assuming the displacement current is uniformly distributed over the area of
the plates, i

d(total)
5'°1d(rectangle) = 80 mA.

(c) The potential difference V between the plates is V = ED, where 0 is their
separation. Thus

do
E dE dV

id(total)
c0 )

= c0A = 74ff , where A is the area of the plates. Thus

dV 241kAi!_ (8.0 x 10-2)(5.0 x 10-3)

e OA
(8.9 x 10-i2)0.50

9.0 x 107 vs.

2. Solution:
e0 S E dA = q (ii);

sss B dA = 0; Oc E di = -doB/dt;
dor

gsC IT d"; = PO" + coe) (i).

3. What To Look For: (b) Note that a phase constant (-ka) must be included in

the argument of the cosine to obtain Ey = E0 cos(wt) at x = a. The argument

of the cosine could also be the negative of the one shown; either one works,

since cos(-a) = cos(a).

Solution: (a) B
x = 0y szo at all times (everywhere!).

(b) Ey = E0 cos[k(x - a) - (00. Bs = +Ey/c. (Note that Es = 0.)

a = 0.100 m, w is given in the problem, and k = w/c = 1.00 x 10-2/m. Thus

ka = 1.00 x 10-3 rad.

(c) These expressions satisfy the conditions for the simplified form of
Maxwell's equations given at the top of the test page. Substituting them into
these equations gives us

-kg) sin[k(x - a) - wt] 3 -w(Eclic) sin[k(x - a) - wt]; and

?
-k(EB/c) sin[k(x - a) - wt] = -c0u0wE0 sin[k(x - a) - wt].

Since coup = 1/c
2
, these equations are both satisfied because we set k = w/c,

above.
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MAXWELL'S PREDICTIONS

MASTERY TEST GRADING KEY - Form 8

B-1

1. What To Look For: (b) Check that the correct value is used for the displace-
ment current, i.e., id(max) rather than i

d(max)"

Solution: (a) id = co dIE/dt = c0cR2 dEz/dt, where R is the radius of the

plates. id = -c
0

2
wE
m

cos wt. The maximum value of this is

id(max) = cuR
2

-_ (8.9 x 10
12

)140.100)
2
(6.0 x 10

3
)(2.00 x 10

3
) = 3.4 pA.

(b) By Ampere's law: 2iTrBmax = fc

B =
0
i
d(max) (4w x 10

-7
1(3.4 x 1

max 8wr
8 (5.0 x 10

2
)

2. Solution: (i) co Os = q. (ii) 15 d = O.

4 t.- dl. = -d1B/dt. 13 di =
PO

(i
CO

dO/dt).

3. What To Look For: (a) Note that the argument of the cosine must be kx wt,
or -kx wt, in order for the wave to travel in the negative x direction.
There must also be a minus sign in the expression for Bz, to make E x B = c.

Solution: (a) Ex =E
z
= Bx =B

y
= O. Ey = E

0
cos(kx wt).

d& = POid(max) (1/4)P0id(max)
Thus

6%

= 3.4 x 10-12 T.

Bz = -(E0/c) cos(kx wt). E0 = 2.00 uV/m, Eo/c = 6.7 x 10
-15

T, and

w = 2wf = 9.4 x 10
6

Hz. Thus k = w/c = 3.14 x 10
-2
tm.

(b) Bz(a, a, a, t) = -(E0/c) cos(ka wt), where a = 50 m.

Bz(a, a, a, t) = -(E0/c) cos(1.57 rad wt) -or -1-(E0/c) sin wt.

(c) These expressions satisfy the conditions for the simplified form of
Maxwell's equations given at the top of the test page. Substituting them yields

7
- (E

0
/c) sin(kx wt)

wt) +colt E0 sin(kx wt).

and we set k = w/c above, these are both satisfied.

-kE
0

sin(kx wt)

4.k(E0/c) sin(kx

Since sotto = 1/c2

and
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MAXWELL'S PREDICTIONS

MASTERY TEST GRADING KEY - Form C

C-1

1. (a) By Ampere's law, 2urB = Oct dt = void (i = 0 between the plates)

where r is the radius of the circular plates, and of the path C. So

4 2211 2w(0.100)(5.0 x l0-1°)

id vo
= 0.250 mA.

4. x107

(b) i = id = 0.250 mA.

(c) id = codoE/dt = c0ur2dE/dt; so

10
dE/dt =

1d2 =
2.5 x

8.9 x 10
8

V/m s.
Eer (8.9 x 10-12-4)2(0.100)2

2. Solution: co as E dg = q.

(ii) Oc t dr F 40B/dt.

(1) fs g dg = O.

Oc g dt = u
0
(i

0
dO

E
/dt)

3. What To Look For: (a) Check that the argument of the cosine is kx wt, or

-kx - at, so that the wave travels in the negative x direction. Also, there

must be a minus sign in the expression for Bz, in order that E x B = c.

Solution: (a) Choose the y axis to lie along the direction of 1% and set your

clock so that E is a maximum at t = 0 (this avoids a phase constant 0).

ThenEx=Ez=Bx=By = 0,

Ey E cos(kx wt), Bz = -(E0/c) cos(kx wt) [where k = 27r/X

= 1.04 x 10 5/m; w u kc - 3.14 x 10
13
/s (E0 is not determined).]

(b) These fields satisfy the conditions for the simplified form of Maxwell's

equations; so we substitute the expressions for Ey and Bz into the equations

at the top of the page.

-kE0 sin(kx
2

wt) -w(E0/c) sin(kx wt) and

4-k(E
o
/c) sin(kx wt)

0
v
0
wE

0
sin(kx wt).

Both these are satisfied, since c
0 0

1 /c
2

, and we set w = kc above.
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